Cargando…
Chamber identity programs drive early functional partitioning of the heart
The vertebrate heart muscle (myocardium) develops from the first heart field (FHF) and expands by adding second heart field (SHF) cells. While both lineages exist already in teleosts, the primordial contributions of FHF and SHF to heart structure and function remain incompletely understood. Here we...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560818/ https://www.ncbi.nlm.nih.gov/pubmed/26306682 http://dx.doi.org/10.1038/ncomms9146 |
_version_ | 1782388965846810624 |
---|---|
author | Mosimann, Christian Panáková, Daniela Werdich, Andreas A. Musso, Gabriel Burger, Alexa Lawson, Katy L. Carr, Logan A. Nevis, Kathleen R. Sabeh, M. Khaled Zhou, Yi Davidson, Alan J. DiBiase, Anthony Burns, Caroline E. Burns, C. Geoffrey MacRae, Calum A. Zon, Leonard I. |
author_facet | Mosimann, Christian Panáková, Daniela Werdich, Andreas A. Musso, Gabriel Burger, Alexa Lawson, Katy L. Carr, Logan A. Nevis, Kathleen R. Sabeh, M. Khaled Zhou, Yi Davidson, Alan J. DiBiase, Anthony Burns, Caroline E. Burns, C. Geoffrey MacRae, Calum A. Zon, Leonard I. |
author_sort | Mosimann, Christian |
collection | PubMed |
description | The vertebrate heart muscle (myocardium) develops from the first heart field (FHF) and expands by adding second heart field (SHF) cells. While both lineages exist already in teleosts, the primordial contributions of FHF and SHF to heart structure and function remain incompletely understood. Here we delineate the functional contribution of the FHF and SHF to the zebrafish heart using the cis-regulatory elements of the draculin (drl) gene. The drl reporters initially delineate the lateral plate mesoderm, including heart progenitors. Subsequent myocardial drl reporter expression restricts to FHF descendants. We harnessed this unique feature to uncover that loss of tbx5a and pitx2 affect relative FHF versus SHF contributions to the heart. High-resolution physiology reveals distinctive electrical properties of each heart field territory that define a functional boundary within the single zebrafish ventricle. Our data establish that the transcriptional program driving cardiac septation regulates physiologic ventricle partitioning, which successively provides mechanical advantages of sequential contraction. |
format | Online Article Text |
id | pubmed-4560818 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-45608182015-09-14 Chamber identity programs drive early functional partitioning of the heart Mosimann, Christian Panáková, Daniela Werdich, Andreas A. Musso, Gabriel Burger, Alexa Lawson, Katy L. Carr, Logan A. Nevis, Kathleen R. Sabeh, M. Khaled Zhou, Yi Davidson, Alan J. DiBiase, Anthony Burns, Caroline E. Burns, C. Geoffrey MacRae, Calum A. Zon, Leonard I. Nat Commun Article The vertebrate heart muscle (myocardium) develops from the first heart field (FHF) and expands by adding second heart field (SHF) cells. While both lineages exist already in teleosts, the primordial contributions of FHF and SHF to heart structure and function remain incompletely understood. Here we delineate the functional contribution of the FHF and SHF to the zebrafish heart using the cis-regulatory elements of the draculin (drl) gene. The drl reporters initially delineate the lateral plate mesoderm, including heart progenitors. Subsequent myocardial drl reporter expression restricts to FHF descendants. We harnessed this unique feature to uncover that loss of tbx5a and pitx2 affect relative FHF versus SHF contributions to the heart. High-resolution physiology reveals distinctive electrical properties of each heart field territory that define a functional boundary within the single zebrafish ventricle. Our data establish that the transcriptional program driving cardiac septation regulates physiologic ventricle partitioning, which successively provides mechanical advantages of sequential contraction. Nature Pub. Group 2015-08-26 /pmc/articles/PMC4560818/ /pubmed/26306682 http://dx.doi.org/10.1038/ncomms9146 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Mosimann, Christian Panáková, Daniela Werdich, Andreas A. Musso, Gabriel Burger, Alexa Lawson, Katy L. Carr, Logan A. Nevis, Kathleen R. Sabeh, M. Khaled Zhou, Yi Davidson, Alan J. DiBiase, Anthony Burns, Caroline E. Burns, C. Geoffrey MacRae, Calum A. Zon, Leonard I. Chamber identity programs drive early functional partitioning of the heart |
title | Chamber identity programs drive early functional partitioning of the heart |
title_full | Chamber identity programs drive early functional partitioning of the heart |
title_fullStr | Chamber identity programs drive early functional partitioning of the heart |
title_full_unstemmed | Chamber identity programs drive early functional partitioning of the heart |
title_short | Chamber identity programs drive early functional partitioning of the heart |
title_sort | chamber identity programs drive early functional partitioning of the heart |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560818/ https://www.ncbi.nlm.nih.gov/pubmed/26306682 http://dx.doi.org/10.1038/ncomms9146 |
work_keys_str_mv | AT mosimannchristian chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT panakovadaniela chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT werdichandreasa chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT mussogabriel chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT burgeralexa chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT lawsonkatyl chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT carrlogana chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT neviskathleenr chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT sabehmkhaled chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT zhouyi chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT davidsonalanj chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT dibiaseanthony chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT burnscarolinee chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT burnscgeoffrey chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT macraecaluma chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart AT zonleonardi chamberidentityprogramsdriveearlyfunctionalpartitioningoftheheart |