Cargando…
Automated adaptive inference of phenomenological dynamical models
Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty p...
Autores principales: | Daniels, Bryan C., Nemenman, Ilya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560822/ https://www.ncbi.nlm.nih.gov/pubmed/26293508 http://dx.doi.org/10.1038/ncomms9133 |
Ejemplares similares
-
Efficient Inference of Parsimonious Phenomenological Models of Cellular Dynamics Using S-Systems and Alternating Regression
por: Daniels, Bryan C., et al.
Publicado: (2015) -
Inferring phenomenological models of first passage processes
por: Rivera, Catalina, et al.
Publicado: (2021) -
A dynamical model of C. elegans thermal preference reveals independent excitatory and inhibitory learning pathways
por: Roman, Ahmed, et al.
Publicado: (2023) -
Adaptive coding for dynamic sensory inference
por: Młynarski, Wiktor F, et al.
Publicado: (2018) -
Higgs Phenomenology in the Standard Model and Beyond
por: Field, Bryan Jonathan
Publicado: (2005)