Cargando…
Multiple sources of bias confound functional enrichment analysis of global -omics data
Serious and underappreciated sources of bias mean that extreme caution should be applied when using or interpreting functional enrichment analysis to validate findings from global RNA- or protein-expression analyses.
Autores principales: | Timmons, James A., Szkop, Krzysztof J., Gallagher, Iain J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561415/ https://www.ncbi.nlm.nih.gov/pubmed/26346307 http://dx.doi.org/10.1186/s13059-015-0761-7 |
Ejemplares similares
-
The community ecology perspective of omics data
por: Jurburg, Stephanie D., et al.
Publicado: (2022) -
Making multi-omics data accessible to researchers
por: Conesa, Ana, et al.
Publicado: (2019) -
Inhaled corticosteroids and COVID-19-related mortality: confounding or clarifying?
por: Singh, Dave, et al.
Publicado: (2020) -
Sex bias of females in survival from cancer and infections. Is X the answer?
por: Emran, Abdullah Al, et al.
Publicado: (2021) -
An agenda for addressing bias in conflict data
por: Miller, Erin, et al.
Publicado: (2022)