Cargando…

Motor pathway degeneration in young ataxia telangiectasia patients: A diffusion tractography study

BACKGROUND: Our understanding of the effect of ataxia–telangiectasia mutated gene mutations on brain structure and function is limited. In this study, white matter motor pathway integrity was investigated in ataxia telangiectasia patients using diffusion MRI and probabilistic tractography. METHODS:...

Descripción completa

Detalles Bibliográficos
Autores principales: Sahama, Ishani, Sinclair, Kate, Fiori, Simona, Doecke, James, Pannek, Kerstin, Reid, Lee, Lavin, Martin, Rose, Stephen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561673/
https://www.ncbi.nlm.nih.gov/pubmed/26413479
http://dx.doi.org/10.1016/j.nicl.2015.08.007
Descripción
Sumario:BACKGROUND: Our understanding of the effect of ataxia–telangiectasia mutated gene mutations on brain structure and function is limited. In this study, white matter motor pathway integrity was investigated in ataxia telangiectasia patients using diffusion MRI and probabilistic tractography. METHODS: Diffusion MRI were obtained from 12 patients (age range: 7–22 years, mean: 12 years) and 12 typically developing age matched participants (age range 8–23 years, mean: 13 years). White matter fiber tracking and whole tract statistical analyses were used to assess quantitative fractional anisotropy and mean diffusivity differences along the cortico-ponto-cerebellar, cerebellar-thalamo-cortical, somatosensory and lateral corticospinal tract length in patients using a linear mixed effects model. White matter tract streamline number and apparent fiber density in patient and control tracts were also assessed. RESULTS: Reduced fractional anisotropy along all analyzed patient tracts were observed (p < 0.001). Mean diffusivity was significantly elevated in anterior tract locations but was reduced within cerebellar peduncle regions of all patient tracts (p < 0.001). Reduced tract streamline number and tract volume in the left and right corticospinal and somatosensory tracts were observed in patients (p < 0.006). In addition, reduced apparent fiber density in the left and right corticospinal and right somatosensory tracts (p < 0.006) occurred in patients. CONCLUSIONS: Whole tract analysis of the corticomotor, corticospinal and somatosensory pathways in ataxia telangiectasia showed significant white matter degeneration along the entire length of motor circuits, highlighting that ataxia–telangiectasia gene mutation impacts the cerebellum and multiple other motor circuits in young patients.