Cargando…
Supervised Learning Based Hypothesis Generation from Biomedical Literature
Nowadays, the amount of biomedical literatures is growing at an explosive speed, and there is much useful knowledge undiscovered in this literature. Researchers can form biomedical hypotheses through mining these works. In this paper, we propose a supervised learning based approach to generate hypot...
Autores principales: | Sang, Shengtian, Yang, Zhihao, Li, Zongyao, Lin, Hongfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561867/ https://www.ncbi.nlm.nih.gov/pubmed/26380291 http://dx.doi.org/10.1155/2015/698527 |
Ejemplares similares
-
Semi-supervised method for biomedical event extraction
por: Wang, Jian, et al.
Publicado: (2013) -
SemaTyP: a knowledge graph based literature mining method for drug discovery
por: Sang, Shengtian, et al.
Publicado: (2018) -
A Single Kernel-Based Approach to Extract Drug-Drug Interactions from Biomedical Literature
por: Zhang, Yijia, et al.
Publicado: (2012) -
A supervised term ranking model for diversity enhanced biomedical information retrieval
por: Xu, Bo, et al.
Publicado: (2019) -
Emati: a recommender system for biomedical literature based on supervised learning
por: Kart, Özge, et al.
Publicado: (2022)