Cargando…
Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information
Electroencephalogram (EEG) is susceptible to various nonneural physiological artifacts. Automatic artifact removal from EEG data remains a key challenge for extracting relevant information from brain activities. To adapt to variable subjects and EEG acquisition environments, this paper presents an a...
Autores principales: | Zhang, Chi, Tong, Li, Zeng, Ying, Jiang, Jingfang, Bu, Haibing, Yan, Bin, Li, Jianxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562337/ https://www.ncbi.nlm.nih.gov/pubmed/26380294 http://dx.doi.org/10.1155/2015/720450 |
Ejemplares similares
-
Automated motion artifact removal for intravital microscopy, without a priori information
por: Lee, Sungon, et al.
Publicado: (2014) -
Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals
por: Winkler, Irene, et al.
Publicado: (2011) -
Removal of Artifacts from EEG Signals: A Review
por: Jiang, Xiao, et al.
Publicado: (2019) -
An asynchronous artifact-enhanced electroencephalogram based control paradigm assisted by slight facial expression
por: Lu, Zhufeng, et al.
Publicado: (2022) -
Suppressing of Power Line Artifact From Electroencephalogram Measurements Using Sparsity in Frequency Domain
por: Tan, Jin-Lin, et al.
Publicado: (2021)