Cargando…
Rapid onset vasodilation with single muscle contractions in the leg: influence of age
The influence of aging on contraction-induced rapid vasodilation has been well characterized in the forearm. We sought to examine the impact of aging on contraction-induced rapid vasodilation in the leg following single muscle contractions and determine whether potential age-related impairments were...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562596/ https://www.ncbi.nlm.nih.gov/pubmed/26320213 http://dx.doi.org/10.14814/phy2.12516 |
Sumario: | The influence of aging on contraction-induced rapid vasodilation has been well characterized in the forearm. We sought to examine the impact of aging on contraction-induced rapid vasodilation in the leg following single muscle contractions and determine whether potential age-related impairments were similar between limbs (leg vs. arm). Fourteen young (23 ± 1 years) and 16 older (66 ± 1 years) adults performed single leg knee extensions at 20%, 40%, and 60% of work rate maximum. Femoral artery diameter and blood velocity were measured using Doppler ultrasound. Limb vascular conductance (VC) was calculated using blood flow (mL·min(−1)) and mean arterial pressure (mmHg). Peak and total vasodilator responses in the leg (change [Δ] in VC from baseline) were blunted in older adults by 44–50% across exercise intensities (P < 0.05 for all). When normalized for muscle mass, age-related differences were still evident (P < 0.05). Comparing the rapid vasodilator responses between the arm and the leg of the same individuals at similar relative intensities (20% and 40%) reveals that aging influences peak and total vasodilation equally between the limbs (no significant age × limb interaction at either intensity, P = 0.28–0.80). Our data demonstrate that (1) older adults exhibit an attenuated rapid hyperemic and vasodilator response in the leg; and (2) the age-related reductions in rapid vasodilation are similar between the arm and the leg. The mechanisms contributing to the age-related differences in contraction-induced rapid vasodilation are perhaps similar to those seen with the forearm model, but have not been confirmed. |
---|