Cargando…
A NIMA-Related Kinase Suppresses the Flagellar Instability Associated with the Loss of Multiple Axonemal Structures
CCDC39 and CCDC40 were first identified as causative mutations in primary ciliary dyskinesia patients; cilia from patients show disorganized microtubules, and they are missing both N-DRC and inner dynein arms proteins. In Chlamydomonas, we used immunoblots and microtubule sliding assays to show that...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562644/ https://www.ncbi.nlm.nih.gov/pubmed/26348919 http://dx.doi.org/10.1371/journal.pgen.1005508 |
_version_ | 1782389189299404800 |
---|---|
author | Lin, Huawen Zhang, Zhengyan Guo, Suyang Chen, Fan Kessler, Jonathan M. Wang, Yan Mei Dutcher, Susan K. |
author_facet | Lin, Huawen Zhang, Zhengyan Guo, Suyang Chen, Fan Kessler, Jonathan M. Wang, Yan Mei Dutcher, Susan K. |
author_sort | Lin, Huawen |
collection | PubMed |
description | CCDC39 and CCDC40 were first identified as causative mutations in primary ciliary dyskinesia patients; cilia from patients show disorganized microtubules, and they are missing both N-DRC and inner dynein arms proteins. In Chlamydomonas, we used immunoblots and microtubule sliding assays to show that mutants in CCDC40 (PF7) and CCDC39 (PF8) fail to assemble N-DRC, several inner dynein arms, tektin, and CCDC39. Enrichment screens for suppression of pf7; pf8 cells led to the isolation of five independent extragenic suppressors defined by four different mutations in a NIMA-related kinase, CNK11. These alleles partially rescue the flagellar length defect, but not the motility defect. The suppressor does not restore the missing N-DRC and inner dynein arm proteins. In addition, the cnk11 mutations partially suppress the short flagella phenotype of N-DRC and axonemal dynein mutants, but do not suppress the motility defects. The tpg1 mutation in TTLL9, a tubulin polyglutamylase, partially suppresses the length phenotype in the same axonemal dynein mutants. In contrast to cnk11, tpg1 does not suppress the short flagella phenotype of pf7. The polyglutamylated tubulin in the proximal region that remains in the tpg1 mutant is reduced further in the pf7; tpg1 double mutant by immunofluorescence. CCDC40, which is needed for docking multiple other axonemal complexes, is needed for tubulin polyglutamylation in the proximal end of the flagella. The CCDC39 and CCDC40 proteins are likely to be involved in recruiting another tubulin glutamylase(s) to the flagella. Another difference between cnk11-1 and tpg1 mutants is that cnk11-1 cells show a faster turnover rate of tubulin at the flagellar tip than in wild-type flagella and tpg1 flagella show a slower rate. The double mutant shows a turnover rate similar to tpg1, which suggests the faster turnover rate in cnk11-1 flagella requires polyglutamylation. Thus, we hypothesize that many short flagella mutants in Chlamydomonas have increased instability of axonemal microtubules. Both CNK11 and tubulin polyglutamylation play roles in regulating the stability of axonemal microtubules. |
format | Online Article Text |
id | pubmed-4562644 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45626442015-09-10 A NIMA-Related Kinase Suppresses the Flagellar Instability Associated with the Loss of Multiple Axonemal Structures Lin, Huawen Zhang, Zhengyan Guo, Suyang Chen, Fan Kessler, Jonathan M. Wang, Yan Mei Dutcher, Susan K. PLoS Genet Research Article CCDC39 and CCDC40 were first identified as causative mutations in primary ciliary dyskinesia patients; cilia from patients show disorganized microtubules, and they are missing both N-DRC and inner dynein arms proteins. In Chlamydomonas, we used immunoblots and microtubule sliding assays to show that mutants in CCDC40 (PF7) and CCDC39 (PF8) fail to assemble N-DRC, several inner dynein arms, tektin, and CCDC39. Enrichment screens for suppression of pf7; pf8 cells led to the isolation of five independent extragenic suppressors defined by four different mutations in a NIMA-related kinase, CNK11. These alleles partially rescue the flagellar length defect, but not the motility defect. The suppressor does not restore the missing N-DRC and inner dynein arm proteins. In addition, the cnk11 mutations partially suppress the short flagella phenotype of N-DRC and axonemal dynein mutants, but do not suppress the motility defects. The tpg1 mutation in TTLL9, a tubulin polyglutamylase, partially suppresses the length phenotype in the same axonemal dynein mutants. In contrast to cnk11, tpg1 does not suppress the short flagella phenotype of pf7. The polyglutamylated tubulin in the proximal region that remains in the tpg1 mutant is reduced further in the pf7; tpg1 double mutant by immunofluorescence. CCDC40, which is needed for docking multiple other axonemal complexes, is needed for tubulin polyglutamylation in the proximal end of the flagella. The CCDC39 and CCDC40 proteins are likely to be involved in recruiting another tubulin glutamylase(s) to the flagella. Another difference between cnk11-1 and tpg1 mutants is that cnk11-1 cells show a faster turnover rate of tubulin at the flagellar tip than in wild-type flagella and tpg1 flagella show a slower rate. The double mutant shows a turnover rate similar to tpg1, which suggests the faster turnover rate in cnk11-1 flagella requires polyglutamylation. Thus, we hypothesize that many short flagella mutants in Chlamydomonas have increased instability of axonemal microtubules. Both CNK11 and tubulin polyglutamylation play roles in regulating the stability of axonemal microtubules. Public Library of Science 2015-09-08 /pmc/articles/PMC4562644/ /pubmed/26348919 http://dx.doi.org/10.1371/journal.pgen.1005508 Text en © 2015 Lin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lin, Huawen Zhang, Zhengyan Guo, Suyang Chen, Fan Kessler, Jonathan M. Wang, Yan Mei Dutcher, Susan K. A NIMA-Related Kinase Suppresses the Flagellar Instability Associated with the Loss of Multiple Axonemal Structures |
title | A NIMA-Related Kinase Suppresses the Flagellar Instability Associated with the Loss of Multiple Axonemal Structures |
title_full | A NIMA-Related Kinase Suppresses the Flagellar Instability Associated with the Loss of Multiple Axonemal Structures |
title_fullStr | A NIMA-Related Kinase Suppresses the Flagellar Instability Associated with the Loss of Multiple Axonemal Structures |
title_full_unstemmed | A NIMA-Related Kinase Suppresses the Flagellar Instability Associated with the Loss of Multiple Axonemal Structures |
title_short | A NIMA-Related Kinase Suppresses the Flagellar Instability Associated with the Loss of Multiple Axonemal Structures |
title_sort | nima-related kinase suppresses the flagellar instability associated with the loss of multiple axonemal structures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562644/ https://www.ncbi.nlm.nih.gov/pubmed/26348919 http://dx.doi.org/10.1371/journal.pgen.1005508 |
work_keys_str_mv | AT linhuawen animarelatedkinasesuppressestheflagellarinstabilityassociatedwiththelossofmultipleaxonemalstructures AT zhangzhengyan animarelatedkinasesuppressestheflagellarinstabilityassociatedwiththelossofmultipleaxonemalstructures AT guosuyang animarelatedkinasesuppressestheflagellarinstabilityassociatedwiththelossofmultipleaxonemalstructures AT chenfan animarelatedkinasesuppressestheflagellarinstabilityassociatedwiththelossofmultipleaxonemalstructures AT kesslerjonathanm animarelatedkinasesuppressestheflagellarinstabilityassociatedwiththelossofmultipleaxonemalstructures AT wangyanmei animarelatedkinasesuppressestheflagellarinstabilityassociatedwiththelossofmultipleaxonemalstructures AT dutchersusank animarelatedkinasesuppressestheflagellarinstabilityassociatedwiththelossofmultipleaxonemalstructures AT linhuawen nimarelatedkinasesuppressestheflagellarinstabilityassociatedwiththelossofmultipleaxonemalstructures AT zhangzhengyan nimarelatedkinasesuppressestheflagellarinstabilityassociatedwiththelossofmultipleaxonemalstructures AT guosuyang nimarelatedkinasesuppressestheflagellarinstabilityassociatedwiththelossofmultipleaxonemalstructures AT chenfan nimarelatedkinasesuppressestheflagellarinstabilityassociatedwiththelossofmultipleaxonemalstructures AT kesslerjonathanm nimarelatedkinasesuppressestheflagellarinstabilityassociatedwiththelossofmultipleaxonemalstructures AT wangyanmei nimarelatedkinasesuppressestheflagellarinstabilityassociatedwiththelossofmultipleaxonemalstructures AT dutchersusank nimarelatedkinasesuppressestheflagellarinstabilityassociatedwiththelossofmultipleaxonemalstructures |