Cargando…
Scaling prediction errors to reward variability benefits error-driven learning in humans
Effective error-driven learning requires individuals to adapt learning to environmental reward variability. The adaptive mechanism may involve decays in learning rate across subsequent trials, as shown previously, and rescaling of reward prediction errors. The present study investigated the influenc...
Autores principales: | Diederen, Kelly M. J., Schultz, Wolfram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Physiological Society
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4563025/ https://www.ncbi.nlm.nih.gov/pubmed/26180123 http://dx.doi.org/10.1152/jn.00483.2015 |
Ejemplares similares
-
Adaptive reliance on the most stable sensory predictions enhances perceptual feature extraction of moving stimuli
por: Kumar, Neeraj, et al.
Publicado: (2016) -
Functional versus effector-specific organization of the human posterior parietal cortex: revisited
por: Heed, Tobias, et al.
Publicado: (2016) -
Concurrent brain responses to separate auditory and visual targets
por: Finoia, Paola, et al.
Publicado: (2015) -
A geometric model of defensive peripersonal space
por: Bufacchi, R. J., et al.
Publicado: (2015) -
Modulation of alpha power at encoding and retrieval tracks the precision of visual short-term memory
por: Poliakov, E., et al.
Publicado: (2014)