Cargando…
Competing Risks Data Analysis with High-dimensional Covariates: An Application in Bladder Cancer
Analysis of microarray data is associated with the methodological problems of high dimension and small sample size. Various methods have been used for variable selection in high-dimension and small sample size cases with a single survival endpoint. However, little effort has been directed toward add...
Autores principales: | Tapak, Leili, Saidijam, Massoud, Sadeghifar, Majid, Poorolajal, Jalal, Mahjub, Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4563215/ https://www.ncbi.nlm.nih.gov/pubmed/25907251 http://dx.doi.org/10.1016/j.gpb.2015.04.001 |
Ejemplares similares
-
Predicting the Survival Time for Bladder Cancer Using an Additive Hazards Model in Microarray Data
por: TAPAK, Leili, et al.
Publicado: (2016) -
Predicting the survival time for diffuse large B-cell lymphoma using microarray data
por: Khoshhali, Mehri, et al.
Publicado: (2012) -
Real-Data Comparison of Data Mining Methods in Prediction of Diabetes in Iran
por: Tapak, Lily, et al.
Publicado: (2013) -
Landmark Prediction of Survival for Breast Cancer Patients: A Case Study in Tehran, Iran
por: ALAFCHI, Behnaz, et al.
Publicado: (2019) -
Joint Modeling of Longitudinal Outcome and Competing Risks: Application to HIV/AIDS Data
por: Najafi Ghobadi, Khadijeh, et al.
Publicado: (2023)