Cargando…
Square Kilometre Array Telescope—Precision Reference Frequency Synchronisation via 1f-2f Dissemination
The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, with a one-square-kilometre collecting area. In addition to its ambitious scientific objectives, such as probing cosmic dawn and the cradle of life, the SKA demands several revolutionary...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4563364/ https://www.ncbi.nlm.nih.gov/pubmed/26349544 http://dx.doi.org/10.1038/srep13851 |
Sumario: | The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, with a one-square-kilometre collecting area. In addition to its ambitious scientific objectives, such as probing cosmic dawn and the cradle of life, the SKA demands several revolutionary technological breakthroughs, such as ultra-high precision synchronisation of the frequency references for thousands of antennas. In this report, with the purpose of application to the SKA, we demonstrate a frequency reference dissemination and synchronisation scheme in which the phase-noise compensation function is applied at the client site. Hence, one central hub can be linked to a large number of client sites, thus forming a star-shaped topology. As a performance test, a 100-MHz reference frequency signal from a hydrogen maser (H-maser) clock is disseminated and recovered at two remote sites. The phase-noise characteristics of the recovered reference frequency signal coincide with those of the H-maser source and satisfy the SKA requirements. |
---|