Cargando…

Hand washing promotion for preventing diarrhoea

BACKGROUND: Diarrhoea accounts for 1.8 million deaths in children in low‐ and middle‐income countries (LMICs). One of the identified strategies to prevent diarrhoea is hand washing. OBJECTIVES: To assess the effects of hand washing promotion interventions on diarrhoeal episodes in children and adult...

Descripción completa

Detalles Bibliográficos
Autores principales: Ejemot‐Nwadiaro, Regina I, Ehiri, John E, Arikpo, Dachi, Meremikwu, Martin M, Critchley, Julia A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd 2015
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4563982/
https://www.ncbi.nlm.nih.gov/pubmed/26346329
http://dx.doi.org/10.1002/14651858.CD004265.pub3
_version_ 1782389361630773248
author Ejemot‐Nwadiaro, Regina I
Ehiri, John E
Arikpo, Dachi
Meremikwu, Martin M
Critchley, Julia A
author_facet Ejemot‐Nwadiaro, Regina I
Ehiri, John E
Arikpo, Dachi
Meremikwu, Martin M
Critchley, Julia A
author_sort Ejemot‐Nwadiaro, Regina I
collection PubMed
description BACKGROUND: Diarrhoea accounts for 1.8 million deaths in children in low‐ and middle‐income countries (LMICs). One of the identified strategies to prevent diarrhoea is hand washing. OBJECTIVES: To assess the effects of hand washing promotion interventions on diarrhoeal episodes in children and adults. SEARCH METHODS: We searched the Cochrane Infectious Diseases Group Specialized Register (27 May 2015); CENTRAL (published in the Cochrane Library 2015, Issue 5); MEDLINE (1966 to 27 May 2015); EMBASE (1974 to 27 May 2015); LILACS (1982 to 27 May 2015); PsycINFO (1967 to 27 May 2015); Science Citation Index and Social Science Citation Index (1981 to 27 May 2015); ERIC (1966 to 27 May 2015); SPECTR (2000 to 27 May 2015); Bibliomap (1990 to 27 May 2015); RoRe, The Grey Literature (2002 to 27 May 2015); World Health Organization (WHO) International Clinical Trial Registry Platform (ICTRP), metaRegister of Controlled Trials (mRCT), and reference lists of articles up to 27 May 2015. We also contacted researchers and organizations in the field. SELECTION CRITERIA: Individually randomized controlled trials (RCTs) and cluster‐RCTs that compared the effects of hand washing interventions on diarrhoea episodes in children and adults with no intervention. DATA COLLECTION AND ANALYSIS: Three review authors independently assessed trial eligibility, extracted data, and assessed risk of bias. We stratified the analyses for child day‐care centres or schools, community, and hospital‐based settings. Where appropriate, incidence rate ratios (IRR) were pooled using the generic inverse variance method and random‐effects model with 95% confidence intervals (CIs). We used the GRADE approach to assess the quality of evidence. MAIN RESULTS: We included 22 RCTs: 12 trials from child day‐care centres or schools in mainly high‐income countries (54,006 participants), nine community‐based trials in LMICs (15,303 participants), and one hospital‐based trial among people with acquired immune deficiency syndrome (AIDS) (148 participants). Hand washing promotion (education activities, sometimes with provision of soap) at child day‐care facilities or schools prevents around one‐third of diarrhoea episodes in high income countries (rate ratio 0.70; 95% CI 0.58 to 0.85; nine trials, 4664 participants, high quality evidence), and may prevent a similar proportion in LMICs but only two trials from urban Egypt and Kenya have evaluated this (rate ratio 0.66, 95% CI 0.43 to 0.99; two trials, 45,380 participants, low quality evidence). Only three trials reported measures of behaviour change and the methods of data collection were susceptible to bias. In one trial from the USA hand washing behaviour was reported to improve; and in the trial from Kenya that provided free soap, hand washing did not increase, but soap use did (data not pooled; three trials, 1845 participants, low quality evidence). Hand washing promotion among communities in LMICs probably prevents around one‐quarter of diarrhoea episodes (rate ratio 0.72, 95% CI 0.62 to 0.83; eight trials, 14,726 participants, moderate quality evidence). However, six of these eight trials were from Asian settings, with only single trials from South America and sub‐Saharan Africa. In six trials, soap was provided free alongside hand washing education, and the overall average effect size was larger than in the two trials which did not provide soap (soap provided: rate ratio 0.66, 95% CI 0.56 to 0.78; six trials, 11,422 participants; education only: rate ratio: 0.84, 95% CI 0.67 to 1.05; two trials, 3304 participants). There was increased hand washing at major prompts (before eating/cooking, after visiting the toilet or cleaning the baby's bottom), and increased compliance to hand hygiene procedure (behavioural outcome) in the intervention groups than the control in community trials (data not pooled: three trials, 3490 participants, high quality evidence). Hand washing promotion for the one trial conducted in a hospital among high‐risk population showed significant reduction in mean episodes of diarrhoea (1.68 fewer) in the intervention group (Mean difference 1.68, 95% CI 1.93 to 1.43; one trial, 148 participants, moderate quality evidence). There was increase in hand washing frequency, seven times per day in the intervention group versus three times in the control in this hospital trial (one trial, 148 participants, moderate quality evidence). We found no trials evaluating or reporting the effects of hand washing promotions on diarrhoea‐related deaths, all‐cause‐under five mortality, or costs. AUTHORS' CONCLUSIONS: Hand washing promotion probably reduces diarrhoea episodes in both child day‐care centres in high‐income countries and among communities living in LMICs by about 30%. However, less is known about how to help people maintain hand washing habits in the longer term. 22 March 2019 Update pending Authors currently updating The update is due to be published in 2019.
format Online
Article
Text
id pubmed-4563982
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher John Wiley & Sons, Ltd
record_format MEDLINE/PubMed
spelling pubmed-45639822015-09-15 Hand washing promotion for preventing diarrhoea Ejemot‐Nwadiaro, Regina I Ehiri, John E Arikpo, Dachi Meremikwu, Martin M Critchley, Julia A Cochrane Database Syst Rev BACKGROUND: Diarrhoea accounts for 1.8 million deaths in children in low‐ and middle‐income countries (LMICs). One of the identified strategies to prevent diarrhoea is hand washing. OBJECTIVES: To assess the effects of hand washing promotion interventions on diarrhoeal episodes in children and adults. SEARCH METHODS: We searched the Cochrane Infectious Diseases Group Specialized Register (27 May 2015); CENTRAL (published in the Cochrane Library 2015, Issue 5); MEDLINE (1966 to 27 May 2015); EMBASE (1974 to 27 May 2015); LILACS (1982 to 27 May 2015); PsycINFO (1967 to 27 May 2015); Science Citation Index and Social Science Citation Index (1981 to 27 May 2015); ERIC (1966 to 27 May 2015); SPECTR (2000 to 27 May 2015); Bibliomap (1990 to 27 May 2015); RoRe, The Grey Literature (2002 to 27 May 2015); World Health Organization (WHO) International Clinical Trial Registry Platform (ICTRP), metaRegister of Controlled Trials (mRCT), and reference lists of articles up to 27 May 2015. We also contacted researchers and organizations in the field. SELECTION CRITERIA: Individually randomized controlled trials (RCTs) and cluster‐RCTs that compared the effects of hand washing interventions on diarrhoea episodes in children and adults with no intervention. DATA COLLECTION AND ANALYSIS: Three review authors independently assessed trial eligibility, extracted data, and assessed risk of bias. We stratified the analyses for child day‐care centres or schools, community, and hospital‐based settings. Where appropriate, incidence rate ratios (IRR) were pooled using the generic inverse variance method and random‐effects model with 95% confidence intervals (CIs). We used the GRADE approach to assess the quality of evidence. MAIN RESULTS: We included 22 RCTs: 12 trials from child day‐care centres or schools in mainly high‐income countries (54,006 participants), nine community‐based trials in LMICs (15,303 participants), and one hospital‐based trial among people with acquired immune deficiency syndrome (AIDS) (148 participants). Hand washing promotion (education activities, sometimes with provision of soap) at child day‐care facilities or schools prevents around one‐third of diarrhoea episodes in high income countries (rate ratio 0.70; 95% CI 0.58 to 0.85; nine trials, 4664 participants, high quality evidence), and may prevent a similar proportion in LMICs but only two trials from urban Egypt and Kenya have evaluated this (rate ratio 0.66, 95% CI 0.43 to 0.99; two trials, 45,380 participants, low quality evidence). Only three trials reported measures of behaviour change and the methods of data collection were susceptible to bias. In one trial from the USA hand washing behaviour was reported to improve; and in the trial from Kenya that provided free soap, hand washing did not increase, but soap use did (data not pooled; three trials, 1845 participants, low quality evidence). Hand washing promotion among communities in LMICs probably prevents around one‐quarter of diarrhoea episodes (rate ratio 0.72, 95% CI 0.62 to 0.83; eight trials, 14,726 participants, moderate quality evidence). However, six of these eight trials were from Asian settings, with only single trials from South America and sub‐Saharan Africa. In six trials, soap was provided free alongside hand washing education, and the overall average effect size was larger than in the two trials which did not provide soap (soap provided: rate ratio 0.66, 95% CI 0.56 to 0.78; six trials, 11,422 participants; education only: rate ratio: 0.84, 95% CI 0.67 to 1.05; two trials, 3304 participants). There was increased hand washing at major prompts (before eating/cooking, after visiting the toilet or cleaning the baby's bottom), and increased compliance to hand hygiene procedure (behavioural outcome) in the intervention groups than the control in community trials (data not pooled: three trials, 3490 participants, high quality evidence). Hand washing promotion for the one trial conducted in a hospital among high‐risk population showed significant reduction in mean episodes of diarrhoea (1.68 fewer) in the intervention group (Mean difference 1.68, 95% CI 1.93 to 1.43; one trial, 148 participants, moderate quality evidence). There was increase in hand washing frequency, seven times per day in the intervention group versus three times in the control in this hospital trial (one trial, 148 participants, moderate quality evidence). We found no trials evaluating or reporting the effects of hand washing promotions on diarrhoea‐related deaths, all‐cause‐under five mortality, or costs. AUTHORS' CONCLUSIONS: Hand washing promotion probably reduces diarrhoea episodes in both child day‐care centres in high‐income countries and among communities living in LMICs by about 30%. However, less is known about how to help people maintain hand washing habits in the longer term. 22 March 2019 Update pending Authors currently updating The update is due to be published in 2019. John Wiley & Sons, Ltd 2015-09-08 /pmc/articles/PMC4563982/ /pubmed/26346329 http://dx.doi.org/10.1002/14651858.CD004265.pub3 Text en Copyright © 2015 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration. This is an open access article under the terms of the Creative Commons Attribution‐Non‐Commercial Licence, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Ejemot‐Nwadiaro, Regina I
Ehiri, John E
Arikpo, Dachi
Meremikwu, Martin M
Critchley, Julia A
Hand washing promotion for preventing diarrhoea
title Hand washing promotion for preventing diarrhoea
title_full Hand washing promotion for preventing diarrhoea
title_fullStr Hand washing promotion for preventing diarrhoea
title_full_unstemmed Hand washing promotion for preventing diarrhoea
title_short Hand washing promotion for preventing diarrhoea
title_sort hand washing promotion for preventing diarrhoea
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4563982/
https://www.ncbi.nlm.nih.gov/pubmed/26346329
http://dx.doi.org/10.1002/14651858.CD004265.pub3
work_keys_str_mv AT ejemotnwadiaroreginai handwashingpromotionforpreventingdiarrhoea
AT ehirijohne handwashingpromotionforpreventingdiarrhoea
AT arikpodachi handwashingpromotionforpreventingdiarrhoea
AT meremikwumartinm handwashingpromotionforpreventingdiarrhoea
AT critchleyjuliaa handwashingpromotionforpreventingdiarrhoea