Cargando…
Finding Risk Groups by Optimizing Artificial Neural Networks on the Area under the Survival Curve Using Genetic Algorithms
We investigate a new method to place patients into risk groups in censored survival data. Properties such as median survival time, and end survival rate, are implicitly improved by optimizing the area under the survival curve. Artificial neural networks (ANN) are trained to either maximize or minimi...
Autores principales: | Kalderstam, Jonas, Edén, Patrik, Ohlsson, Mattias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564106/ https://www.ncbi.nlm.nih.gov/pubmed/26352405 http://dx.doi.org/10.1371/journal.pone.0137597 |
Ejemplares similares
-
Analysis of regional bone scan index measurements for the survival of patients with prostate cancer
por: Kalderstam, Jonas, et al.
Publicado: (2014) -
Artificial neural network models to predict nodal status in clinically node-negative breast cancer
por: Dihge, Looket, et al.
Publicado: (2019) -
Area under the expiratory flow-volume curve: predicted values by artificial neural networks
por: Ioachimescu, Octavian C., et al.
Publicado: (2020) -
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms
por: Garro, Beatriz A., et al.
Publicado: (2015) -
A polynomial time algorithm for computing the area under a GDT curve
por: Poleksic, Aleksandar
Publicado: (2015)