Cargando…
Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images
In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-n...
Autores principales: | Yang, Sejung, Lee, Byung-Uk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564212/ https://www.ncbi.nlm.nih.gov/pubmed/26352138 http://dx.doi.org/10.1371/journal.pone.0136964 |
Ejemplares similares
-
Poisson–Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain
por: Lee, Sangyoon, et al.
Publicado: (2018) -
Approximating Hidden Gaussian Markov Random Fields
por: Rue, H, et al.
Publicado: (2003) -
The Nonsubsampled Contourlet Transform Based Statistical Medical Image Fusion Using Generalized Gaussian Density
por: Yang, Guocheng, et al.
Publicado: (2015) -
A dual adaptive watermarking scheme in contourlet domain for DICOM images
por: Rahimi, Farhad, et al.
Publicado: (2011) -
Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes
por: Nakamura, Tomoaki, et al.
Publicado: (2017)