Cargando…

Enhanced Production of Androst-1,4-Diene-3,17-Dione by Mycobacterium neoaurum JC-12 Using Three-Stage Fermentation Strategy

To improve the androst-1,4-diene-3,17-dione (ADD) production from phytosterol by Mycobacterium neoaurum JC-12, fructose was firstly found favorable as the initial carbon source to increase the biomass and eliminate the lag phase of M. neoaurum JC-12 in the phytosterol transformation process. Based o...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Minglong, Zhang, Xian, Rao, Zhiming, Xu, Meijuan, Yang, Taowei, Li, Hui, Xu, Zhenghong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564235/
https://www.ncbi.nlm.nih.gov/pubmed/26352898
http://dx.doi.org/10.1371/journal.pone.0137658
Descripción
Sumario:To improve the androst-1,4-diene-3,17-dione (ADD) production from phytosterol by Mycobacterium neoaurum JC-12, fructose was firstly found favorable as the initial carbon source to increase the biomass and eliminate the lag phase of M. neoaurum JC-12 in the phytosterol transformation process. Based on this phenomenon, two-stage fermentation by using fructose as the initial carbon source and feeding glucose to maintain strain metabolism was designed. By applying this strategy, the fermentation duration was decreased from 168 h to 120 h with the ADD productivity increased from 0.071 g/(L·h) to 0.108 g/(L·h). Further, three-stage fermentation by adding phytosterol to improve ADD production at the end of the two-stage fermentation was carried out and the final ADD production reached 18.6 g/L, which is the highest reported ADD production using phytosterol as substrate. Thus, this strategy provides a possible way in enhancing the ADD production in pharmaceutical industry.