Cargando…
Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and Downstream Analysis
Analysis of gene expression has contributed to a plethora of biological and medical research studies. Microarrays have been intensively used for the profiling of gene expression during diverse developmental processes, treatments and diseases. New massively parallel sequencing methods, often named as...
Autores principales: | Spies, Daniel, Ciaudo, Constance |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564389/ https://www.ncbi.nlm.nih.gov/pubmed/26430493 http://dx.doi.org/10.1016/j.csbj.2015.08.004 |
Ejemplares similares
-
Comparative analysis of differential gene expression tools for RNA sequencing time course data
por: Spies, Daniel, et al.
Publicado: (2017) -
RNA-Seq Data: A Complexity Journey
por: Capobianco, Enrico
Publicado: (2014) -
Insights into Dynamic Polymicrobial Synergy Revealed by Time-Coursed RNA-Seq
por: Hendrickson, Erik L., et al.
Publicado: (2017) -
Prediction of the miRNA interactome – Established methods and upcoming perspectives
por: Schäfer, Moritz, et al.
Publicado: (2020) -
Emerging artificial intelligence applications in Spatial Transcriptomics analysis
por: Li, Yijun, et al.
Publicado: (2022)