Cargando…

A closer look at cognitive control: differences in resource allocation during updating, inhibition and switching as revealed by pupillometry

The present study investigated resource allocation, as measured by pupil dilation, in tasks measuring updating (2-Back task), inhibition (Stroop task) and switching (Number Switch task). Because each cognitive control component has unique characteristics, differences in patterns of resource allocati...

Descripción completa

Detalles Bibliográficos
Autores principales: Rondeel, Eefje W. M., van Steenbergen, Henk, Holland, Rob W., van Knippenberg, Ad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564574/
https://www.ncbi.nlm.nih.gov/pubmed/26441594
http://dx.doi.org/10.3389/fnhum.2015.00494
Descripción
Sumario:The present study investigated resource allocation, as measured by pupil dilation, in tasks measuring updating (2-Back task), inhibition (Stroop task) and switching (Number Switch task). Because each cognitive control component has unique characteristics, differences in patterns of resource allocation were expected. Pupil and behavioral data from 35 participants were analyzed. In the 2-Back task (requiring correct matching of current stimulus identity at trial p with the stimulus two trials back, p −2) we found that better performance (low total of errors made in the task) was positively correlated to the mean pupil dilation during correctly responding to targets. In the Stroop task, pupil dilation on incongruent trials was higher than those on congruent trials. Incongruent vs. congruent trial pupil dilation differences were positively related to reaction time differences between incongruent and congruent trials. Furthermore, on congruent Stroop trials, pupil dilation was negatively related to reaction times, presumably because more effort allocation paid off in terms of faster responses. In addition, pupil dilation on correctly-responded-to congruent trials predicted a weaker Stroop interference effect in terms of errors, probably because pupil dilation on congruent trials were diagnostic of task motivation, resulting in better performance. In the Number Switch task we found higher pupil dilation in switch as compared to non-switch trials. On the Number Switch task, pupil dilation was not related to performance. We also explored error-related pupil dilation in all tasks. The results provide new insights in the diversity of the cognitive control components in terms of resource allocation as a function of individual differences, task difficulty and error processing.