Cargando…
Toward a General-Purpose Heterogeneous Ensemble for Pattern Classification
We perform an extensive study of the performance of different classification approaches on twenty-five datasets (fourteen image datasets and eleven UCI data mining datasets). The aim is to find General-Purpose (GP) heterogeneous ensembles (requiring little to no parameter tuning) that perform compet...
Autores principales: | Nanni, Loris, Brahnam, Sheryl, Ghidoni, Stefano, Lumini, Alessandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564633/ https://www.ncbi.nlm.nih.gov/pubmed/26413089 http://dx.doi.org/10.1155/2015/909123 |
Ejemplares similares
-
Face Detection Ensemble with Methods Using Depth Information to Filter False Positives
por: Nanni, Loris, et al.
Publicado: (2019) -
An Empirical Study of Different Approaches for Protein Classification
por: Nanni, Loris, et al.
Publicado: (2014) -
Comparison of Different Convolutional Neural Network Activation Functions and Methods for Building Ensembles for Small to Midsize Medical Data Sets
por: Nanni, Loris, et al.
Publicado: (2022) -
Local binary patterns new variants and applications
por: Brahnam, Sheryl, et al.
Publicado: (2014) -
Experiments of Image Classification Using Dissimilarity Spaces Built with Siamese Networks
por: Nanni, Loris, et al.
Publicado: (2021)