Cargando…

Two-Dimensional Crystallization Procedure, from Protein Expression to Sample Preparation

Membrane proteins play important roles for living cells. Structural studies of membrane proteins provide deeper understanding of their mechanisms and further aid in drug design. As compared to other methods, electron microscopy is uniquely suitable for analysis of a broad range of specimens, from sm...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuang, Qie, Purhonen, Pasi, Hebert, Hans
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564634/
https://www.ncbi.nlm.nih.gov/pubmed/26413539
http://dx.doi.org/10.1155/2015/693869
Descripción
Sumario:Membrane proteins play important roles for living cells. Structural studies of membrane proteins provide deeper understanding of their mechanisms and further aid in drug design. As compared to other methods, electron microscopy is uniquely suitable for analysis of a broad range of specimens, from small proteins to large complexes. Of various electron microscopic methods, electron crystallography is particularly well-suited to study membrane proteins which are reconstituted into two-dimensional crystals in lipid environments. In this review, we discuss the steps and parameters for obtaining large and well-ordered two-dimensional crystals. A general description of the principle in each step is provided since this information can also be applied to other biochemical and biophysical methods. The examples are taken from our own studies and published results with related proteins. Our purpose is to give readers a more general idea of electron crystallography and to share our experiences in obtaining suitable crystals for data collection.