Cargando…
An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets
BACKGROUND: Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requir...
Autores principales: | Stanescu, Ana, Caragea, Doina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4565116/ https://www.ncbi.nlm.nih.gov/pubmed/26356316 http://dx.doi.org/10.1186/1752-0509-9-S5-S1 |
Ejemplares similares
-
Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models
por: Caragea, Cornelia, et al.
Publicado: (2010) -
An Impartial Semi-Supervised Learning Strategy for Imbalanced Classification on VHR Images
por: Sun, Fei, et al.
Publicado: (2020) -
Ensemble of Rotation Trees for Imbalanced Medical Datasets
por: Guo, Huaping, et al.
Publicado: (2018) -
EnsembleSplice: ensemble deep learning model for splice site prediction
por: Akpokiro, Victor, et al.
Publicado: (2022) -
Imbalanced Ensemble Learning for Enhanced Pulsar Identification
por: Holewik, Jakub, et al.
Publicado: (2020)