Cargando…
Fast Generation of Sparse Random Kernel Graphs
The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that p...
Autores principales: | Hagberg, Aric, Lemons, Nathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4565681/ https://www.ncbi.nlm.nih.gov/pubmed/26356296 http://dx.doi.org/10.1371/journal.pone.0135177 |
Ejemplares similares
-
Recommending Crowdfunding Project: A Graph Kernel-Based Link Prediction Method for Extremely Sparse Implicit Feedback
por: Yin, Pei, et al.
Publicado: (2022) -
Sparse graphs using exchangeable random measures
por: Caron, François, et al.
Publicado: (2017) -
A fast and effective dependency graph kernel for PPI relation extraction
por: Tikk, Domonkos, et al.
Publicado: (2010) -
Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics
por: Kansal, Raghav, et al.
Publicado: (2020) -
Retracted: Recommending Crowdfunding Project: A Graph Kernel-Based Link Prediction Method for Extremely Sparse Implicit Feedback
por: Neuroscience, Computational Intelligence and
Publicado: (2023)