Cargando…
Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks
Imaging of cancer with (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challengin...
Autores principales: | Ypsilantis, Petros-Pavlos, Siddique, Musib, Sohn, Hyon-Mok, Davies, Andrew, Cook, Gary, Goh, Vicky, Montana, Giovanni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4565716/ https://www.ncbi.nlm.nih.gov/pubmed/26355298 http://dx.doi.org/10.1371/journal.pone.0137036 |
Ejemplares similares
-
Challenges and Promises of PET Radiomics
por: Cook, Gary J.R., et al.
Publicado: (2018) -
The effect of post-injection (18)F-FDG PET scanning time on texture analysis of peripheral nerve sheath tumours in neurofibromatosis-1
por: Lovat, Eitan, et al.
Publicado: (2017) -
Does Measurement of First-Order and Heterogeneity Parameters Improve Response Assessment of Bone Metastases in Breast Cancer Compared to SUV(max) in [(18)F]fluoride and [(18)F]FDG PET?
por: Azad, Gurdip K., et al.
Publicado: (2018) -
The effects of segmentation algorithms on the measurement of (18)F-FDG PET texture parameters in non-small cell lung cancer
por: Bashir, Usman, et al.
Publicado: (2017) -
Radiomics in esophageal and gastric cancer
por: Sah, Bert-Ram, et al.
Publicado: (2019)