Cargando…
Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah)
BACKGROUND: The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566206/ https://www.ncbi.nlm.nih.gov/pubmed/26358635 http://dx.doi.org/10.1186/s12864-015-1828-2 |
_version_ | 1782389689258344448 |
---|---|
author | Tan, Choo Hock Tan, Kae Yi Fung, Shin Yee Tan, Nget Hong |
author_facet | Tan, Choo Hock Tan, Kae Yi Fung, Shin Yee Tan, Nget Hong |
author_sort | Tan, Choo Hock |
collection | PubMed |
description | BACKGROUND: The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS. RESULTS: Transcriptomic results reveal high redundancy of toxin transcripts (3357.36 FPKM/transcript) despite small cluster numbers, implying gene duplication and diversification within restricted protein families. Among the 23 toxin families identified, three-finger toxins (3FTxs) and snake-venom metalloproteases (SVMPs) have the most diverse isoforms. These 2 toxin families are also the most abundantly transcribed, followed in descending order by phospholipases A(2) (PLA(2)s), cysteine-rich secretory proteins (CRISPs), Kunitz-type inhibitors (KUNs), and L-amino acid oxidases (LAAOs). Seventeen toxin families exhibited low mRNA expression, including hyaluronidase, DPP-IV and 5’-nucleotidase that were not previously reported in the venom-gland transcriptome of a Balinese O. hannah. On the other hand, the MOh proteome includes 3FTxs, the most abundantly expressed proteins in the venom (43 % toxin sbundance). Within this toxin family, there are 6 long-chain, 5 short-chain and 2 non-conventional 3FTx. Neurotoxins comprise the major 3FTxs in the MOh venom, consistent with rapid neuromuscular paralysis reported in systemic envenoming. The presence of toxic enzymes such as LAAOs, SVMPs and PLA(2) would explain tissue inflammation and necrotising destruction in local envenoming. Dissimilarities in the subtypes and sequences between the neurotoxins of MOh and Naja kaouthia (monocled cobra) are in agreement with the poor cross-neutralization activity of N. kaouthia antivenom used against MOh venom. Besides, the presence of cobra venom factor, nerve growth factors, phosphodiesterase, 5’-nucleotidase, and DPP-IV in the venom proteome suggests its probable hypotensive action in subduing prey. CONCLUSION: This study reports the diversity and abundance of toxins in the venom of the Malaysian king cobra (MOh). The results correlate with the pathophysiological actions of MOh venom, and dispute the use of Naja cobra antivenoms to treat MOh envenomation. The findings also provide a deeper insight into venom variations due to geography, which is crucial for the development of a useful pan-regional antivenom. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1828-2) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4566206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-45662062015-09-12 Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah) Tan, Choo Hock Tan, Kae Yi Fung, Shin Yee Tan, Nget Hong BMC Genomics Research Article BACKGROUND: The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS. RESULTS: Transcriptomic results reveal high redundancy of toxin transcripts (3357.36 FPKM/transcript) despite small cluster numbers, implying gene duplication and diversification within restricted protein families. Among the 23 toxin families identified, three-finger toxins (3FTxs) and snake-venom metalloproteases (SVMPs) have the most diverse isoforms. These 2 toxin families are also the most abundantly transcribed, followed in descending order by phospholipases A(2) (PLA(2)s), cysteine-rich secretory proteins (CRISPs), Kunitz-type inhibitors (KUNs), and L-amino acid oxidases (LAAOs). Seventeen toxin families exhibited low mRNA expression, including hyaluronidase, DPP-IV and 5’-nucleotidase that were not previously reported in the venom-gland transcriptome of a Balinese O. hannah. On the other hand, the MOh proteome includes 3FTxs, the most abundantly expressed proteins in the venom (43 % toxin sbundance). Within this toxin family, there are 6 long-chain, 5 short-chain and 2 non-conventional 3FTx. Neurotoxins comprise the major 3FTxs in the MOh venom, consistent with rapid neuromuscular paralysis reported in systemic envenoming. The presence of toxic enzymes such as LAAOs, SVMPs and PLA(2) would explain tissue inflammation and necrotising destruction in local envenoming. Dissimilarities in the subtypes and sequences between the neurotoxins of MOh and Naja kaouthia (monocled cobra) are in agreement with the poor cross-neutralization activity of N. kaouthia antivenom used against MOh venom. Besides, the presence of cobra venom factor, nerve growth factors, phosphodiesterase, 5’-nucleotidase, and DPP-IV in the venom proteome suggests its probable hypotensive action in subduing prey. CONCLUSION: This study reports the diversity and abundance of toxins in the venom of the Malaysian king cobra (MOh). The results correlate with the pathophysiological actions of MOh venom, and dispute the use of Naja cobra antivenoms to treat MOh envenomation. The findings also provide a deeper insight into venom variations due to geography, which is crucial for the development of a useful pan-regional antivenom. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1828-2) contains supplementary material, which is available to authorized users. BioMed Central 2015-09-10 /pmc/articles/PMC4566206/ /pubmed/26358635 http://dx.doi.org/10.1186/s12864-015-1828-2 Text en © Tan et al. 2015 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Tan, Choo Hock Tan, Kae Yi Fung, Shin Yee Tan, Nget Hong Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah) |
title | Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah) |
title_full | Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah) |
title_fullStr | Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah) |
title_full_unstemmed | Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah) |
title_short | Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah) |
title_sort | venom-gland transcriptome and venom proteome of the malaysian king cobra (ophiophagus hannah) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566206/ https://www.ncbi.nlm.nih.gov/pubmed/26358635 http://dx.doi.org/10.1186/s12864-015-1828-2 |
work_keys_str_mv | AT tanchoohock venomglandtranscriptomeandvenomproteomeofthemalaysiankingcobraophiophagushannah AT tankaeyi venomglandtranscriptomeandvenomproteomeofthemalaysiankingcobraophiophagushannah AT fungshinyee venomglandtranscriptomeandvenomproteomeofthemalaysiankingcobraophiophagushannah AT tanngethong venomglandtranscriptomeandvenomproteomeofthemalaysiankingcobraophiophagushannah |