Cargando…
Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue
Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart, but the tempor...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bioscientifica Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566841/ https://www.ncbi.nlm.nih.gov/pubmed/26286623 http://dx.doi.org/10.1530/EC-150074 |
_version_ | 1782389734162563072 |
---|---|
author | Smith, Julie Fahrenkrug, Jan Jørgensen, Henrik L Christoffersen, Christina Goetze, Jens P |
author_facet | Smith, Julie Fahrenkrug, Jan Jørgensen, Henrik L Christoffersen, Christina Goetze, Jens P |
author_sort | Smith, Julie |
collection | PubMed |
description | Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart, but the temporal expression profile of their cognate receptors has not been examined in white adipose tissue. We therefore collected peri-renal white adipose tissue and serum from WT mice. Tissue mRNA contents of NPRs – NPR-A and NPR-C, the clock genes Per1 and Bmal1, and transcripts involved in lipid metabolism were quantified at 4-h intervals: in the diurnal study, mice were exposed to a period of 12 h light followed by 12 h darkness (n=52). In the circadian study, mice were kept in darkness for 24 h (n=47). Concomitant serum concentrations of free fatty acids, glycerol, triglycerides (TGs), and insulin were measured. Per1 and Bmal1 mRNA contents showed reciprocal circadian profiles (P<0.0001). NPR-A mRNA contents followed a temporal pattern (P=0.01), peaking in the dark (active) period. In contrast, NPR-C mRNA was expressed in an antiphase manner with nadir in the active period (P=0.007). TG concentrations in serum peaked in the active dark period (P=0.003). In conclusion, NPR-A and NPR-C gene expression is associated with the expression of clock genes in white adipose tissue. The reciprocal expression may thus contribute to regulate lipolysis and energy homeostasis in a diurnal manner. |
format | Online Article Text |
id | pubmed-4566841 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Bioscientifica Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-45668412015-09-14 Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue Smith, Julie Fahrenkrug, Jan Jørgensen, Henrik L Christoffersen, Christina Goetze, Jens P Endocr Connect Research Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart, but the temporal expression profile of their cognate receptors has not been examined in white adipose tissue. We therefore collected peri-renal white adipose tissue and serum from WT mice. Tissue mRNA contents of NPRs – NPR-A and NPR-C, the clock genes Per1 and Bmal1, and transcripts involved in lipid metabolism were quantified at 4-h intervals: in the diurnal study, mice were exposed to a period of 12 h light followed by 12 h darkness (n=52). In the circadian study, mice were kept in darkness for 24 h (n=47). Concomitant serum concentrations of free fatty acids, glycerol, triglycerides (TGs), and insulin were measured. Per1 and Bmal1 mRNA contents showed reciprocal circadian profiles (P<0.0001). NPR-A mRNA contents followed a temporal pattern (P=0.01), peaking in the dark (active) period. In contrast, NPR-C mRNA was expressed in an antiphase manner with nadir in the active period (P=0.007). TG concentrations in serum peaked in the active dark period (P=0.003). In conclusion, NPR-A and NPR-C gene expression is associated with the expression of clock genes in white adipose tissue. The reciprocal expression may thus contribute to regulate lipolysis and energy homeostasis in a diurnal manner. Bioscientifica Ltd 2015-08-18 /pmc/articles/PMC4566841/ /pubmed/26286623 http://dx.doi.org/10.1530/EC-150074 Text en © 2015 The authors http://creativecommons.org/licenses/by-nc/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) . |
spellingShingle | Research Smith, Julie Fahrenkrug, Jan Jørgensen, Henrik L Christoffersen, Christina Goetze, Jens P Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue |
title | Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue |
title_full | Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue |
title_fullStr | Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue |
title_full_unstemmed | Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue |
title_short | Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue |
title_sort | diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566841/ https://www.ncbi.nlm.nih.gov/pubmed/26286623 http://dx.doi.org/10.1530/EC-150074 |
work_keys_str_mv | AT smithjulie diurnalgeneexpressionoflipolyticnatriureticpeptidereceptorsinwhiteadiposetissue AT fahrenkrugjan diurnalgeneexpressionoflipolyticnatriureticpeptidereceptorsinwhiteadiposetissue AT jørgensenhenrikl diurnalgeneexpressionoflipolyticnatriureticpeptidereceptorsinwhiteadiposetissue AT christoffersenchristina diurnalgeneexpressionoflipolyticnatriureticpeptidereceptorsinwhiteadiposetissue AT goetzejensp diurnalgeneexpressionoflipolyticnatriureticpeptidereceptorsinwhiteadiposetissue |