Cargando…
Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes
WRKY transcription factors (TFs) are plant specific and play important roles in regulating diverse biological processes. To identify TFs with broad-spectrum effects on various stress responses in Brassica napus, an important oil crop grown across diverse ecological regions worldwide, we functionally...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566978/ https://www.ncbi.nlm.nih.gov/pubmed/26071533 http://dx.doi.org/10.1093/jxb/erv287 |
_version_ | 1782389752499011584 |
---|---|
author | Li, Qingyuan Yin, Mei Li, Yongpeng Fan, Chuchuan Yang, Qingyong Wu, Jian Zhang, Chunyu Wang, Hong Zhou, Yongming |
author_facet | Li, Qingyuan Yin, Mei Li, Yongpeng Fan, Chuchuan Yang, Qingyong Wu, Jian Zhang, Chunyu Wang, Hong Zhou, Yongming |
author_sort | Li, Qingyuan |
collection | PubMed |
description | WRKY transcription factors (TFs) are plant specific and play important roles in regulating diverse biological processes. To identify TFs with broad-spectrum effects on various stress responses in Brassica napus, an important oil crop grown across diverse ecological regions worldwide, we functionally characterized Bna.TTG2 genes, which are homologous to the Arabidopsis AtTTG2 (WRKY44) gene. Four Bna.TTG2 genes were capable of rescuing the trichome phenotypes of Arabidopsis ttg2 mutants. Overexpressing one Bna.TTG2 family member, BnaA.TTG2.a.1, remarkably increased trichome numbers in Arabidopsis and B. napus plants. Interestingly, the BnaA.TTG2.a.1-overexpressing plants of both species exhibited increased sensitivity to salt stress. In BnaA.TTG2.a.1-overexpressing Arabidopsis under salt stress, the endogenous indole-3-acetic acid (IAA) content was reduced, and the expression of two auxin biosynthesis genes, TRYPTOPHAN BIOSYNTHESIS 5 (TRP5) and YUCCA2 (YUC2), was downregulated. The results from yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase reporter assays revealed that BnaA.TTG2.a.1 is able to bind to the promoters of TRP5 and YUC2. These data indicated that BnaA.TTG2.a.1 confers salt sensitivity to overexpressing plants by suppressing the expression of IAA synthesis genes and thus lowering IAA levels. Transgenic Arabidopsis plants with an N-terminus-deleted BnaA.TTG2.a.1 no longer showed hypersensitivity to salt stress, suggesting that the N terminus of BnaA.TTG2.a.1 plays a critical role in salt stress responses. Therefore, in addition to its classical function in trichome development, our study reveals a novel role for Bna.TTG2 genes in salt stress responses. |
format | Online Article Text |
id | pubmed-4566978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-45669782015-09-15 Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes Li, Qingyuan Yin, Mei Li, Yongpeng Fan, Chuchuan Yang, Qingyong Wu, Jian Zhang, Chunyu Wang, Hong Zhou, Yongming J Exp Bot Research Paper WRKY transcription factors (TFs) are plant specific and play important roles in regulating diverse biological processes. To identify TFs with broad-spectrum effects on various stress responses in Brassica napus, an important oil crop grown across diverse ecological regions worldwide, we functionally characterized Bna.TTG2 genes, which are homologous to the Arabidopsis AtTTG2 (WRKY44) gene. Four Bna.TTG2 genes were capable of rescuing the trichome phenotypes of Arabidopsis ttg2 mutants. Overexpressing one Bna.TTG2 family member, BnaA.TTG2.a.1, remarkably increased trichome numbers in Arabidopsis and B. napus plants. Interestingly, the BnaA.TTG2.a.1-overexpressing plants of both species exhibited increased sensitivity to salt stress. In BnaA.TTG2.a.1-overexpressing Arabidopsis under salt stress, the endogenous indole-3-acetic acid (IAA) content was reduced, and the expression of two auxin biosynthesis genes, TRYPTOPHAN BIOSYNTHESIS 5 (TRP5) and YUCCA2 (YUC2), was downregulated. The results from yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase reporter assays revealed that BnaA.TTG2.a.1 is able to bind to the promoters of TRP5 and YUC2. These data indicated that BnaA.TTG2.a.1 confers salt sensitivity to overexpressing plants by suppressing the expression of IAA synthesis genes and thus lowering IAA levels. Transgenic Arabidopsis plants with an N-terminus-deleted BnaA.TTG2.a.1 no longer showed hypersensitivity to salt stress, suggesting that the N terminus of BnaA.TTG2.a.1 plays a critical role in salt stress responses. Therefore, in addition to its classical function in trichome development, our study reveals a novel role for Bna.TTG2 genes in salt stress responses. Oxford University Press 2015-09 2015-06-12 /pmc/articles/PMC4566978/ /pubmed/26071533 http://dx.doi.org/10.1093/jxb/erv287 Text en © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Li, Qingyuan Yin, Mei Li, Yongpeng Fan, Chuchuan Yang, Qingyong Wu, Jian Zhang, Chunyu Wang, Hong Zhou, Yongming Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes |
title | Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes |
title_full | Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes |
title_fullStr | Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes |
title_full_unstemmed | Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes |
title_short | Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes |
title_sort | expression of brassica napus ttg2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566978/ https://www.ncbi.nlm.nih.gov/pubmed/26071533 http://dx.doi.org/10.1093/jxb/erv287 |
work_keys_str_mv | AT liqingyuan expressionofbrassicanapusttg2aregulatoroftrichomedevelopmentincreasesplantsensitivitytosaltstressbysuppressingtheexpressionofauxinbiosynthesisgenes AT yinmei expressionofbrassicanapusttg2aregulatoroftrichomedevelopmentincreasesplantsensitivitytosaltstressbysuppressingtheexpressionofauxinbiosynthesisgenes AT liyongpeng expressionofbrassicanapusttg2aregulatoroftrichomedevelopmentincreasesplantsensitivitytosaltstressbysuppressingtheexpressionofauxinbiosynthesisgenes AT fanchuchuan expressionofbrassicanapusttg2aregulatoroftrichomedevelopmentincreasesplantsensitivitytosaltstressbysuppressingtheexpressionofauxinbiosynthesisgenes AT yangqingyong expressionofbrassicanapusttg2aregulatoroftrichomedevelopmentincreasesplantsensitivitytosaltstressbysuppressingtheexpressionofauxinbiosynthesisgenes AT wujian expressionofbrassicanapusttg2aregulatoroftrichomedevelopmentincreasesplantsensitivitytosaltstressbysuppressingtheexpressionofauxinbiosynthesisgenes AT zhangchunyu expressionofbrassicanapusttg2aregulatoroftrichomedevelopmentincreasesplantsensitivitytosaltstressbysuppressingtheexpressionofauxinbiosynthesisgenes AT wanghong expressionofbrassicanapusttg2aregulatoroftrichomedevelopmentincreasesplantsensitivitytosaltstressbysuppressingtheexpressionofauxinbiosynthesisgenes AT zhouyongming expressionofbrassicanapusttg2aregulatoroftrichomedevelopmentincreasesplantsensitivitytosaltstressbysuppressingtheexpressionofauxinbiosynthesisgenes |