Cargando…

Vacancy-dependent stability of cubic and wurtzite Ti(1−x)Al(x)N

While it is well-known that supersaturated cubic-structured Ti(1−x)Al(x)N can be prepared by physical vapor deposition, the impact of point defects on formation process and cubic to wurtzite transition is largely unexplored. Irrespective of point defects, ab initio calculations correctly predict the...

Descripción completa

Detalles Bibliográficos
Autores principales: Euchner, H., Mayrhofer, P.H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Sequoia 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4567048/
https://www.ncbi.nlm.nih.gov/pubmed/26412921
http://dx.doi.org/10.1016/j.surfcoat.2015.05.017
_version_ 1782389765468848128
author Euchner, H.
Mayrhofer, P.H.
author_facet Euchner, H.
Mayrhofer, P.H.
author_sort Euchner, H.
collection PubMed
description While it is well-known that supersaturated cubic-structured Ti(1−x)Al(x)N can be prepared by physical vapor deposition, the impact of point defects on formation process and cubic to wurtzite transition is largely unexplored. Irrespective of point defects, ab initio calculations correctly predict the Al concentration of the cubic to wurtzite transition. By means of density functional theory we show that vacancies on metal and/or non-metal sites only slightly affect the cubic to wurtzite transition region, whereas they clearly affect the physical properties.
format Online
Article
Text
id pubmed-4567048
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Elsevier Sequoia
record_format MEDLINE/PubMed
spelling pubmed-45670482015-09-25 Vacancy-dependent stability of cubic and wurtzite Ti(1−x)Al(x)N Euchner, H. Mayrhofer, P.H. Surf Coat Technol Article While it is well-known that supersaturated cubic-structured Ti(1−x)Al(x)N can be prepared by physical vapor deposition, the impact of point defects on formation process and cubic to wurtzite transition is largely unexplored. Irrespective of point defects, ab initio calculations correctly predict the Al concentration of the cubic to wurtzite transition. By means of density functional theory we show that vacancies on metal and/or non-metal sites only slightly affect the cubic to wurtzite transition region, whereas they clearly affect the physical properties. Elsevier Sequoia 2015-08-15 /pmc/articles/PMC4567048/ /pubmed/26412921 http://dx.doi.org/10.1016/j.surfcoat.2015.05.017 Text en © 2015 The Authors. Published by Elsevier B.V. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Euchner, H.
Mayrhofer, P.H.
Vacancy-dependent stability of cubic and wurtzite Ti(1−x)Al(x)N
title Vacancy-dependent stability of cubic and wurtzite Ti(1−x)Al(x)N
title_full Vacancy-dependent stability of cubic and wurtzite Ti(1−x)Al(x)N
title_fullStr Vacancy-dependent stability of cubic and wurtzite Ti(1−x)Al(x)N
title_full_unstemmed Vacancy-dependent stability of cubic and wurtzite Ti(1−x)Al(x)N
title_short Vacancy-dependent stability of cubic and wurtzite Ti(1−x)Al(x)N
title_sort vacancy-dependent stability of cubic and wurtzite ti(1−x)al(x)n
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4567048/
https://www.ncbi.nlm.nih.gov/pubmed/26412921
http://dx.doi.org/10.1016/j.surfcoat.2015.05.017
work_keys_str_mv AT euchnerh vacancydependentstabilityofcubicandwurtziteti1xalxn
AT mayrhoferph vacancydependentstabilityofcubicandwurtziteti1xalxn