Cargando…

“Phylogenetic and evolutionary analysis of functional divergence among Gamma glutamyl transpeptidase (GGT) subfamilies”

BACKGROUND: γ-glutamyltranspeptidase (GGT) is a bi-substrate enzyme conserved in all three domains of life. It catalyzes the cleavage and transfer of γ-glutamyl moiety of glutathione to either water (hydrolysis) or substrates like peptides (transpeptidation). GGTs exhibit great variability in their...

Descripción completa

Detalles Bibliográficos
Autores principales: Verma, Ved Vrat, Gupta, Rani, Goel, Manisha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568574/
https://www.ncbi.nlm.nih.gov/pubmed/26370226
http://dx.doi.org/10.1186/s13062-015-0080-7
Descripción
Sumario:BACKGROUND: γ-glutamyltranspeptidase (GGT) is a bi-substrate enzyme conserved in all three domains of life. It catalyzes the cleavage and transfer of γ-glutamyl moiety of glutathione to either water (hydrolysis) or substrates like peptides (transpeptidation). GGTs exhibit great variability in their enzyme kinetics although the mechanism of catalysis is conserved. Recently, GGT has been shown to be a virulence factor in microbes like Helicobacter pylori and Bacillus anthracis. In mammalian cells also, GGT inhibition prior to chemotherapy has been shown to sensitize tumors to the therapy. Therefore, lately both bacterial and eukaryotic GGTs have emerged as potential drug targets, but the efforts directed towards finding suitable inhibitors have not yielded any significant results yet. We propose that delineating the residues responsible for the functional diversity associated with these proteins could help in design of species/clade specific inhibitors. RESULTS: In the present study, we have carried out phylogenetic analysis on a set of 47 GGT-like proteins to address the functional diversity. These proteins segregate into various subfamilies, forming separate clades on the tree. Sequence conservation and motif prediction studies show that even though most of the highly conserved residues have been characterized biochemically in previous studies, a significant number of novel putative sites and motifs are discovered that vary in a clade specific manner. Many of the putative sites predicted during the functional divergence type I and type II analysis, lie close to the known catalytic residues and line the walls of the substrate binding cavity, reinforcing their role in modulating the substrate specificity, catalytic rates and stability of this protein. CONCLUSION: The study offers interesting insights into the evolution of GGT-like proteins in pathogenic vs. non-pathogenic bacteria, archaea and eukaryotes. Our analysis delineates residues that are highly specific to each GGT subfamily. We propose that these sites not only explain the differences in stability and catalytic variability of various GGTs but can also aid in design of specific inhibitors against particular GGTs. Thus, apart from the commonly used in-silico inhibitor screening approaches, evolutionary analysis identifying the functional divergence hotspots in GGT proteins could augment the structure based drug design approaches. REVIEWERS: This article was reviewed by Andrei Osterman, Christine Orengo, and Srikrishna Subramanian. For complete reports, see the Reviewers’ reports section ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13062-015-0080-7) contains supplementary material, which is available to authorized users.