Cargando…
A Computationally Inexpensive Optimal Guidance via Radial-Basis-Function Neural Network for Autonomous Soft Landing on Asteroids
Optimal guidance is essential for the soft landing task. However, due to its high computational complexities, it is hardly applied to the autonomous guidance. In this paper, a computationally inexpensive optimal guidance algorithm based on the radial basis function neural network (RBFNN) is proposed...
Autores principales: | Zhang, Peng, Liu, Keping, Zhao, Bo, Li, Yuanchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569059/ https://www.ncbi.nlm.nih.gov/pubmed/26367382 http://dx.doi.org/10.1371/journal.pone.0137792 |
Ejemplares similares
-
The autonomous asteroid mapping mission "Bering"
por: Andersen, A C, et al.
Publicado: (2004) -
Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network
por: Falat, Lukas, et al.
Publicado: (2016) -
Motion Planning for Autonomous Vehicle Based on Radial Basis Function Neural Network in Unstructured Environment
por: Chen, Jiajia, et al.
Publicado: (2014) -
The number density of asteroids in the asteroid main-belt
por: Bidstrup, P R, et al.
Publicado: (2004) -
The asteroid hazard: evaluating and avoiding the threat of asteroid impacts
por: Di Martino, M, et al.
Publicado: (2009)