Cargando…
Robust Generalized Low Rank Approximations of Matrices
In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLR...
Autores principales: | Shi, Jiarong, Yang, Wei, Zheng, Xiuyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569376/ https://www.ncbi.nlm.nih.gov/pubmed/26367116 http://dx.doi.org/10.1371/journal.pone.0138028 |
Ejemplares similares
-
Penalized weighted low-rank approximation for robust recovery of recurrent copy number variations
por: Gao, Xiaoli
Publicado: (2015) -
Lower bounds for the low-rank matrix approximation
por: Li, Jicheng, et al.
Publicado: (2017) -
Low Rank Approximation: Algorithms, Implementation, Applications
por: Markovsky, Ivan
Publicado: (2012) -
The lower bounds for the rank of matrices and some sufficient conditions for nonsingular matrices
por: Wang, Dafei, et al.
Publicado: (2017) -
Ranking Support Vector Machine with Kernel Approximation
por: Chen, Kai, et al.
Publicado: (2017)