Cargando…
Transcriptome Analysis Reveals Key Flavonoid 3′-Hydroxylase and Flavonoid 3′,5′-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis
The ratio of dihydroxylated to trihydroxylated catechins (RDTC) is an important indicator of tea quality and biochemical marker for the study of genetic diversity. It is reported to be under genetic control but the underlying mechanism is not well understood. Flavonoid 3′-hydroxylase (F3′H) and flav...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569414/ https://www.ncbi.nlm.nih.gov/pubmed/26367395 http://dx.doi.org/10.1371/journal.pone.0137925 |
_version_ | 1782390043350925312 |
---|---|
author | Wei, Kang Wang, Liyuan Zhang, Chengcai Wu, Liyun Li, Hailin Zhang, Fen Cheng, Hao |
author_facet | Wei, Kang Wang, Liyuan Zhang, Chengcai Wu, Liyun Li, Hailin Zhang, Fen Cheng, Hao |
author_sort | Wei, Kang |
collection | PubMed |
description | The ratio of dihydroxylated to trihydroxylated catechins (RDTC) is an important indicator of tea quality and biochemical marker for the study of genetic diversity. It is reported to be under genetic control but the underlying mechanism is not well understood. Flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) are key enzymes involved in the formation of dihydroxylated and trihydroxylated catechins. The transcriptome and HPLC analysis of tea samples from Longjing43 and Zhonghuang2 under control and shading treatment were performed to assess the F3′H and F3′5′H genes that might affect RDTC. A total of 74.7 million reads of mRNA seq (2×101bp) data were generated. After de novo assembly, 109,909 unigenes were obtained, and 39,982 of them were annotated using 7 public databases. Four key F3′H and F3′5′H genes (including CsF3′5′H1, CsF3′H1, CsF3′H2 and CsF3′H3) were identified to be closely correlated with RDTC. Shading treatment had little effect on RDTC, which was attributed to the stable expression of these key F3′H and F3′5′H genes. The correlation of the coexpression of four key genes and RDTC was further confirmed among 13 tea varieties by real time PCR and HPLC analysis. The coexpression of three F3′H genes and a F3′5′H gene may play a key role in affecting RDTC in Camellia sinensis. The current results may establish valuable foundation for further research about the mechanism controlling catechin composition in tea. |
format | Online Article Text |
id | pubmed-4569414 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45694142015-09-18 Transcriptome Analysis Reveals Key Flavonoid 3′-Hydroxylase and Flavonoid 3′,5′-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis Wei, Kang Wang, Liyuan Zhang, Chengcai Wu, Liyun Li, Hailin Zhang, Fen Cheng, Hao PLoS One Research Article The ratio of dihydroxylated to trihydroxylated catechins (RDTC) is an important indicator of tea quality and biochemical marker for the study of genetic diversity. It is reported to be under genetic control but the underlying mechanism is not well understood. Flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) are key enzymes involved in the formation of dihydroxylated and trihydroxylated catechins. The transcriptome and HPLC analysis of tea samples from Longjing43 and Zhonghuang2 under control and shading treatment were performed to assess the F3′H and F3′5′H genes that might affect RDTC. A total of 74.7 million reads of mRNA seq (2×101bp) data were generated. After de novo assembly, 109,909 unigenes were obtained, and 39,982 of them were annotated using 7 public databases. Four key F3′H and F3′5′H genes (including CsF3′5′H1, CsF3′H1, CsF3′H2 and CsF3′H3) were identified to be closely correlated with RDTC. Shading treatment had little effect on RDTC, which was attributed to the stable expression of these key F3′H and F3′5′H genes. The correlation of the coexpression of four key genes and RDTC was further confirmed among 13 tea varieties by real time PCR and HPLC analysis. The coexpression of three F3′H genes and a F3′5′H gene may play a key role in affecting RDTC in Camellia sinensis. The current results may establish valuable foundation for further research about the mechanism controlling catechin composition in tea. Public Library of Science 2015-09-14 /pmc/articles/PMC4569414/ /pubmed/26367395 http://dx.doi.org/10.1371/journal.pone.0137925 Text en © 2015 Wei et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wei, Kang Wang, Liyuan Zhang, Chengcai Wu, Liyun Li, Hailin Zhang, Fen Cheng, Hao Transcriptome Analysis Reveals Key Flavonoid 3′-Hydroxylase and Flavonoid 3′,5′-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis |
title | Transcriptome Analysis Reveals Key Flavonoid 3′-Hydroxylase and Flavonoid 3′,5′-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis
|
title_full | Transcriptome Analysis Reveals Key Flavonoid 3′-Hydroxylase and Flavonoid 3′,5′-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis
|
title_fullStr | Transcriptome Analysis Reveals Key Flavonoid 3′-Hydroxylase and Flavonoid 3′,5′-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis
|
title_full_unstemmed | Transcriptome Analysis Reveals Key Flavonoid 3′-Hydroxylase and Flavonoid 3′,5′-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis
|
title_short | Transcriptome Analysis Reveals Key Flavonoid 3′-Hydroxylase and Flavonoid 3′,5′-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis
|
title_sort | transcriptome analysis reveals key flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes in affecting the ratio of dihydroxylated to trihydroxylated catechins in camellia sinensis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569414/ https://www.ncbi.nlm.nih.gov/pubmed/26367395 http://dx.doi.org/10.1371/journal.pone.0137925 |
work_keys_str_mv | AT weikang transcriptomeanalysisrevealskeyflavonoid3hydroxylaseandflavonoid35hydroxylasegenesinaffectingtheratioofdihydroxylatedtotrihydroxylatedcatechinsincamelliasinensis AT wangliyuan transcriptomeanalysisrevealskeyflavonoid3hydroxylaseandflavonoid35hydroxylasegenesinaffectingtheratioofdihydroxylatedtotrihydroxylatedcatechinsincamelliasinensis AT zhangchengcai transcriptomeanalysisrevealskeyflavonoid3hydroxylaseandflavonoid35hydroxylasegenesinaffectingtheratioofdihydroxylatedtotrihydroxylatedcatechinsincamelliasinensis AT wuliyun transcriptomeanalysisrevealskeyflavonoid3hydroxylaseandflavonoid35hydroxylasegenesinaffectingtheratioofdihydroxylatedtotrihydroxylatedcatechinsincamelliasinensis AT lihailin transcriptomeanalysisrevealskeyflavonoid3hydroxylaseandflavonoid35hydroxylasegenesinaffectingtheratioofdihydroxylatedtotrihydroxylatedcatechinsincamelliasinensis AT zhangfen transcriptomeanalysisrevealskeyflavonoid3hydroxylaseandflavonoid35hydroxylasegenesinaffectingtheratioofdihydroxylatedtotrihydroxylatedcatechinsincamelliasinensis AT chenghao transcriptomeanalysisrevealskeyflavonoid3hydroxylaseandflavonoid35hydroxylasegenesinaffectingtheratioofdihydroxylatedtotrihydroxylatedcatechinsincamelliasinensis |