Cargando…
Towards Semi-Automatic Artifact Rejection for the Improvement of Alzheimer’s Disease Screening from EEG Signals
A large number of studies have analyzed measurable changes that Alzheimer’s disease causes on electroencephalography (EEG). Despite being easily reproducible, those markers have limited sensitivity, which reduces the interest of EEG as a screening tool for this pathology. This is for a large part du...
Autores principales: | Solé-Casals, Jordi, Vialatte, François-Benoît |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570302/ https://www.ncbi.nlm.nih.gov/pubmed/26213933 http://dx.doi.org/10.3390/s150817963 |
Ejemplares similares
-
A semi-simulated EEG/EOG dataset for the comparison of EOG artifact rejection techniques
por: Klados, Manousos A., et al.
Publicado: (2016) -
A Fast Approach to Removing Muscle Artifacts for EEG with Signal Serialization Based Ensemble Empirical Mode Decomposition
por: Dai, Yangyang, et al.
Publicado: (2021) -
Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals
por: Winkler, Irene, et al.
Publicado: (2011) -
Improving the Specificity of EEG for Diagnosing Alzheimer's Disease
por: Vialatte, François-B., et al.
Publicado: (2011) -
Bump time-frequency toolbox: a toolbox for time-frequency oscillatory bursts extraction in electrophysiological signals
por: Vialatte, François B, et al.
Publicado: (2009)