Cargando…
Distributed Density Estimation Based on a Mixture of Factor Analyzers in a Sensor Network
Distributed density estimation in sensor networks has received much attention due to its broad applicability. When encountering high-dimensional observations, a mixture of factor analyzers (MFA) is taken to replace mixture of Gaussians for describing the distributions of observations. In this paper,...
Autores principales: | Wei, Xin, Li, Chunguang, Zhou, Liang, Zhao, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570359/ https://www.ncbi.nlm.nih.gov/pubmed/26251903 http://dx.doi.org/10.3390/s150819047 |
Ejemplares similares
-
Diffusion-Based EM Algorithm for Distributed Estimation of Gaussian Mixtures in Wireless Sensor Networks
por: Weng, Yang, et al.
Publicado: (2011) -
Mixture density networks for the indirect estimation of reference intervals
por: Hepp, Tobias, et al.
Publicado: (2022) -
Distributed fusion estimation for sensor networks with communication constraints
por: Zhang, Wen-An, et al.
Publicado: (2016) -
Bias in Estimation of a Mixture of Normal Distributions
por: Lourens, Spencer, et al.
Publicado: (2013) -
Two-Dimensional DOA and Polarization Estimation for a Mixture of Uncorrelated and Coherent Sources with Sparsely-Distributed Vector Sensor Array
por: Si, Weijian, et al.
Publicado: (2016)