Cargando…
A Context-Aware EEG Headset System for Early Detection of Driver Drowsiness
Driver drowsiness is a major cause of mortality in traffic accidents worldwide. Electroencephalographic (EEG) signal, which reflects the brain activities, is more directly related to drowsiness. Thus, many Brain-Machine-Interface (BMI) systems have been proposed to detect driver drowsiness. However,...
Autores principales: | Li, Gang, Chung, Wan-Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570452/ https://www.ncbi.nlm.nih.gov/pubmed/26308002 http://dx.doi.org/10.3390/s150820873 |
Ejemplares similares
-
A Systemic Review of Available Low-Cost EEG Headsets Used for Drowsiness Detection
por: LaRocco, John, et al.
Publicado: (2020) -
Estimation of Eye Closure Degree Using EEG Sensors and Its Application in Driver Drowsiness Detection
por: Li, Gang, et al.
Publicado: (2014) -
Electroencephalogram-Based Approaches for Driver Drowsiness Detection and Management: A Review
por: Li, Gang, et al.
Publicado: (2022) -
A Review of EEG Signal Features and Their Application in Driver Drowsiness Detection Systems
por: Stancin, Igor, et al.
Publicado: (2021) -
Utilization of a combined EEG/NIRS system to predict driver drowsiness
por: Nguyen, Thien, et al.
Publicado: (2017)