Cargando…
Seven neurons memorizing sequences of alphabetical images via spike-timing dependent plasticity
An artificial neural network, such as a Boltzmann machine, can be trained with the Hebb rule so that it stores static patterns and retrieves a particular pattern when an associated cue is presented to it. Such a network, however, cannot effectively deal with dynamic patterns in the manner of living...
Autores principales: | Osogami, Takayuki, Otsuka, Makoto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570975/ https://www.ncbi.nlm.nih.gov/pubmed/26374672 http://dx.doi.org/10.1038/srep14149 |
Ejemplares similares
-
Spatio-temporal pattern recognizers using spiking neurons and spike-timing-dependent plasticity
por: Humble, James, et al.
Publicado: (2012) -
Identifying spike-timing dependent plasticity in spike train models of synaptically-coupled neuronal ensembles
por: El Dawlatly, Seif, et al.
Publicado: (2007) -
Decorrelation of Odor Representations via Spike Timing-Dependent Plasticity
por: Linster, Christiane, et al.
Publicado: (2010) -
Spike-Timing Dependent Plasticity in the Striatum
por: Fino, Elodie, et al.
Publicado: (2010) -
Calcium and Spike Timing-Dependent Plasticity
por: Inglebert, Yanis, et al.
Publicado: (2021)