Cargando…

Variation in Dube3a expression affects neurotransmission at the Drosophila neuromuscular junction

Changes in UBE3A expression levels in neurons can cause neurogenetic disorders ranging from Angelman syndrome (AS) (decreased levels) to autism (increased levels). Here we investigated the effects on neuronal function of varying UBE3A levels using the Drosophila neuromuscular junction as a model for...

Descripción completa

Detalles Bibliográficos
Autores principales: Valdez, Colleen, Scroggs, Reese, Chassen, Rachel, Reiter, Lawrence T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571101/
https://www.ncbi.nlm.nih.gov/pubmed/25948754
http://dx.doi.org/10.1242/bio.20148045
_version_ 1782390301723197440
author Valdez, Colleen
Scroggs, Reese
Chassen, Rachel
Reiter, Lawrence T.
author_facet Valdez, Colleen
Scroggs, Reese
Chassen, Rachel
Reiter, Lawrence T.
author_sort Valdez, Colleen
collection PubMed
description Changes in UBE3A expression levels in neurons can cause neurogenetic disorders ranging from Angelman syndrome (AS) (decreased levels) to autism (increased levels). Here we investigated the effects on neuronal function of varying UBE3A levels using the Drosophila neuromuscular junction as a model for both of these neurogenetic disorders. Stimulations that evoked excitatory junction potentials (EJPs) at 1 Hz intermittently failed to evoke EJPs at 15 Hz in a significantly higher proportion of Dube3a over-expressors using the pan neuronal GAL4 driver C155-GAL4 (C155-GAL4>UAS-Dube3a) relative to controls (C155>+ alone). However, in the Dube3a over-expressing larval neurons with no failures, there was no difference in EJP amplitude at the beginning of the train, or the rate of decrease in EJP amplitude over the course of the train compared to controls. In the absence of tetrodotoxin (TTX), spontaneous EJPs were observed in significantly more C155-GAL4>UAS-Dube3a larva compared to controls. In the presence of TTX, spontaneous and evoked EJPs were completely blocked and mEJP amplitude and frequency did not differ among genotypes. These data suggest that over-expression of wild type Dube3a, but not a ubiquitination defective Dube3a-C/A protein, compromises the ability of motor neuron axons to support closely spaced trains of action potentials, while at the same time increasing excitability. EJPs evoked at 15 Hz in the absence of Dube3a (Dube3a(15b) homozygous mutant larvae) decayed more rapidly over the course of 30 stimulations compared to w(1118) controls, and Dube3a(15b) larval muscles had significantly more negative resting membrane potentials (RMP). However, these results could not be recapitulated using RNAi knockdown of Dube3a in muscle or neurons alone, suggesting more global developmental defects contribute to this phenotype. These data suggest that reduced UBE3A expression levels may cause global changes that affect RMP and neurotransmitter release from motorneurons at the neuromuscular junction. Similar affects of under- and over-expression of UBE3A on membrane potential and synaptic transmission may underlie the synaptic plasticity defects observed in both AS and autism.
format Online
Article
Text
id pubmed-4571101
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher The Company of Biologists
record_format MEDLINE/PubMed
spelling pubmed-45711012015-09-17 Variation in Dube3a expression affects neurotransmission at the Drosophila neuromuscular junction Valdez, Colleen Scroggs, Reese Chassen, Rachel Reiter, Lawrence T. Biol Open Research Article Changes in UBE3A expression levels in neurons can cause neurogenetic disorders ranging from Angelman syndrome (AS) (decreased levels) to autism (increased levels). Here we investigated the effects on neuronal function of varying UBE3A levels using the Drosophila neuromuscular junction as a model for both of these neurogenetic disorders. Stimulations that evoked excitatory junction potentials (EJPs) at 1 Hz intermittently failed to evoke EJPs at 15 Hz in a significantly higher proportion of Dube3a over-expressors using the pan neuronal GAL4 driver C155-GAL4 (C155-GAL4>UAS-Dube3a) relative to controls (C155>+ alone). However, in the Dube3a over-expressing larval neurons with no failures, there was no difference in EJP amplitude at the beginning of the train, or the rate of decrease in EJP amplitude over the course of the train compared to controls. In the absence of tetrodotoxin (TTX), spontaneous EJPs were observed in significantly more C155-GAL4>UAS-Dube3a larva compared to controls. In the presence of TTX, spontaneous and evoked EJPs were completely blocked and mEJP amplitude and frequency did not differ among genotypes. These data suggest that over-expression of wild type Dube3a, but not a ubiquitination defective Dube3a-C/A protein, compromises the ability of motor neuron axons to support closely spaced trains of action potentials, while at the same time increasing excitability. EJPs evoked at 15 Hz in the absence of Dube3a (Dube3a(15b) homozygous mutant larvae) decayed more rapidly over the course of 30 stimulations compared to w(1118) controls, and Dube3a(15b) larval muscles had significantly more negative resting membrane potentials (RMP). However, these results could not be recapitulated using RNAi knockdown of Dube3a in muscle or neurons alone, suggesting more global developmental defects contribute to this phenotype. These data suggest that reduced UBE3A expression levels may cause global changes that affect RMP and neurotransmitter release from motorneurons at the neuromuscular junction. Similar affects of under- and over-expression of UBE3A on membrane potential and synaptic transmission may underlie the synaptic plasticity defects observed in both AS and autism. The Company of Biologists 2015-05-06 /pmc/articles/PMC4571101/ /pubmed/25948754 http://dx.doi.org/10.1242/bio.20148045 Text en © 2015. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
spellingShingle Research Article
Valdez, Colleen
Scroggs, Reese
Chassen, Rachel
Reiter, Lawrence T.
Variation in Dube3a expression affects neurotransmission at the Drosophila neuromuscular junction
title Variation in Dube3a expression affects neurotransmission at the Drosophila neuromuscular junction
title_full Variation in Dube3a expression affects neurotransmission at the Drosophila neuromuscular junction
title_fullStr Variation in Dube3a expression affects neurotransmission at the Drosophila neuromuscular junction
title_full_unstemmed Variation in Dube3a expression affects neurotransmission at the Drosophila neuromuscular junction
title_short Variation in Dube3a expression affects neurotransmission at the Drosophila neuromuscular junction
title_sort variation in dube3a expression affects neurotransmission at the drosophila neuromuscular junction
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571101/
https://www.ncbi.nlm.nih.gov/pubmed/25948754
http://dx.doi.org/10.1242/bio.20148045
work_keys_str_mv AT valdezcolleen variationindube3aexpressionaffectsneurotransmissionatthedrosophilaneuromuscularjunction
AT scroggsreese variationindube3aexpressionaffectsneurotransmissionatthedrosophilaneuromuscularjunction
AT chassenrachel variationindube3aexpressionaffectsneurotransmissionatthedrosophilaneuromuscularjunction
AT reiterlawrencet variationindube3aexpressionaffectsneurotransmissionatthedrosophilaneuromuscularjunction