Cargando…
Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B)
[Image: see text] Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air–water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-t...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2015
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571829/ https://www.ncbi.nlm.nih.gov/pubmed/26270023 http://dx.doi.org/10.1021/acs.biochem.5b00308 |
_version_ | 1782390368978862080 |
---|---|
author | Hemming, Joanna M. Hughes, Brian R. Rennie, Adrian R. Tomas, Salvador Campbell, Richard A. Hughes, Arwel V. Arnold, Thomas Botchway, Stanley W. Thompson, Katherine C. |
author_facet | Hemming, Joanna M. Hughes, Brian R. Rennie, Adrian R. Tomas, Salvador Campbell, Richard A. Hughes, Arwel V. Arnold, Thomas Botchway, Stanley W. Thompson, Katherine C. |
author_sort | Hemming, Joanna M. |
collection | PubMed |
description | [Image: see text] Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air–water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B((1–25))] and the other a construct of the N- and C-termini of SP-B [SP-B((1–25,63–78))], called SMB. Exposure to dilute levels of ozone (∼2 ppm) of monolayers of each peptide at the air–water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air–water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function. |
format | Online Article Text |
id | pubmed-4571829 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-45718292015-09-23 Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B) Hemming, Joanna M. Hughes, Brian R. Rennie, Adrian R. Tomas, Salvador Campbell, Richard A. Hughes, Arwel V. Arnold, Thomas Botchway, Stanley W. Thompson, Katherine C. Biochemistry [Image: see text] Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air–water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B((1–25))] and the other a construct of the N- and C-termini of SP-B [SP-B((1–25,63–78))], called SMB. Exposure to dilute levels of ozone (∼2 ppm) of monolayers of each peptide at the air–water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air–water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function. American Chemical Society 2015-08-13 2015-08-25 /pmc/articles/PMC4571829/ /pubmed/26270023 http://dx.doi.org/10.1021/acs.biochem.5b00308 Text en Copyright © 2015 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Hemming, Joanna M. Hughes, Brian R. Rennie, Adrian R. Tomas, Salvador Campbell, Richard A. Hughes, Arwel V. Arnold, Thomas Botchway, Stanley W. Thompson, Katherine C. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B) |
title | Environmental Pollutant Ozone Causes Damage to Lung
Surfactant Protein B (SP-B) |
title_full | Environmental Pollutant Ozone Causes Damage to Lung
Surfactant Protein B (SP-B) |
title_fullStr | Environmental Pollutant Ozone Causes Damage to Lung
Surfactant Protein B (SP-B) |
title_full_unstemmed | Environmental Pollutant Ozone Causes Damage to Lung
Surfactant Protein B (SP-B) |
title_short | Environmental Pollutant Ozone Causes Damage to Lung
Surfactant Protein B (SP-B) |
title_sort | environmental pollutant ozone causes damage to lung
surfactant protein b (sp-b) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571829/ https://www.ncbi.nlm.nih.gov/pubmed/26270023 http://dx.doi.org/10.1021/acs.biochem.5b00308 |
work_keys_str_mv | AT hemmingjoannam environmentalpollutantozonecausesdamagetolungsurfactantproteinbspb AT hughesbrianr environmentalpollutantozonecausesdamagetolungsurfactantproteinbspb AT rennieadrianr environmentalpollutantozonecausesdamagetolungsurfactantproteinbspb AT tomassalvador environmentalpollutantozonecausesdamagetolungsurfactantproteinbspb AT campbellricharda environmentalpollutantozonecausesdamagetolungsurfactantproteinbspb AT hughesarwelv environmentalpollutantozonecausesdamagetolungsurfactantproteinbspb AT arnoldthomas environmentalpollutantozonecausesdamagetolungsurfactantproteinbspb AT botchwaystanleyw environmentalpollutantozonecausesdamagetolungsurfactantproteinbspb AT thompsonkatherinec environmentalpollutantozonecausesdamagetolungsurfactantproteinbspb |