Cargando…
Computational modeling of Adelta-fiber-mediated nociceptive detection of electrocutaneous stimulation
Sensitization is an example of malfunctioning of the nociceptive pathway in either the peripheral or central nervous system. Using quantitative sensory testing, one can only infer sensitization, but not determine the defective subsystem. The states of the subsystems may be characterized using comput...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572082/ https://www.ncbi.nlm.nih.gov/pubmed/26228799 http://dx.doi.org/10.1007/s00422-015-0656-4 |
_version_ | 1782390390250274816 |
---|---|
author | Yang, Huan Meijer, Hil G. E. Doll, Robert J. Buitenweg, Jan R. van Gils, Stephan A. |
author_facet | Yang, Huan Meijer, Hil G. E. Doll, Robert J. Buitenweg, Jan R. van Gils, Stephan A. |
author_sort | Yang, Huan |
collection | PubMed |
description | Sensitization is an example of malfunctioning of the nociceptive pathway in either the peripheral or central nervous system. Using quantitative sensory testing, one can only infer sensitization, but not determine the defective subsystem. The states of the subsystems may be characterized using computational modeling together with experimental data. Here, we develop a neurophysiologically plausible model replicating experimental observations from a psychophysical human subject study. We study the effects of single temporal stimulus parameters on detection thresholds corresponding to a 0.5 detection probability. To model peripheral activation and central processing, we adapt a stochastic drift-diffusion model and a probabilistic hazard model to our experimental setting without reaction times. We retain six lumped parameters in both models characterizing peripheral and central mechanisms. Both models have similar psychophysical functions, but the hazard model is computationally more efficient. The model-based effects of temporal stimulus parameters on detection thresholds are consistent with those from human subject data. |
format | Online Article Text |
id | pubmed-4572082 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-45720822015-09-23 Computational modeling of Adelta-fiber-mediated nociceptive detection of electrocutaneous stimulation Yang, Huan Meijer, Hil G. E. Doll, Robert J. Buitenweg, Jan R. van Gils, Stephan A. Biol Cybern Original Article Sensitization is an example of malfunctioning of the nociceptive pathway in either the peripheral or central nervous system. Using quantitative sensory testing, one can only infer sensitization, but not determine the defective subsystem. The states of the subsystems may be characterized using computational modeling together with experimental data. Here, we develop a neurophysiologically plausible model replicating experimental observations from a psychophysical human subject study. We study the effects of single temporal stimulus parameters on detection thresholds corresponding to a 0.5 detection probability. To model peripheral activation and central processing, we adapt a stochastic drift-diffusion model and a probabilistic hazard model to our experimental setting without reaction times. We retain six lumped parameters in both models characterizing peripheral and central mechanisms. Both models have similar psychophysical functions, but the hazard model is computationally more efficient. The model-based effects of temporal stimulus parameters on detection thresholds are consistent with those from human subject data. Springer Berlin Heidelberg 2015-07-31 2015 /pmc/articles/PMC4572082/ /pubmed/26228799 http://dx.doi.org/10.1007/s00422-015-0656-4 Text en © The Author(s) 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Yang, Huan Meijer, Hil G. E. Doll, Robert J. Buitenweg, Jan R. van Gils, Stephan A. Computational modeling of Adelta-fiber-mediated nociceptive detection of electrocutaneous stimulation |
title | Computational modeling of Adelta-fiber-mediated nociceptive detection of electrocutaneous stimulation |
title_full | Computational modeling of Adelta-fiber-mediated nociceptive detection of electrocutaneous stimulation |
title_fullStr | Computational modeling of Adelta-fiber-mediated nociceptive detection of electrocutaneous stimulation |
title_full_unstemmed | Computational modeling of Adelta-fiber-mediated nociceptive detection of electrocutaneous stimulation |
title_short | Computational modeling of Adelta-fiber-mediated nociceptive detection of electrocutaneous stimulation |
title_sort | computational modeling of adelta-fiber-mediated nociceptive detection of electrocutaneous stimulation |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572082/ https://www.ncbi.nlm.nih.gov/pubmed/26228799 http://dx.doi.org/10.1007/s00422-015-0656-4 |
work_keys_str_mv | AT yanghuan computationalmodelingofadeltafibermediatednociceptivedetectionofelectrocutaneousstimulation AT meijerhilge computationalmodelingofadeltafibermediatednociceptivedetectionofelectrocutaneousstimulation AT dollrobertj computationalmodelingofadeltafibermediatednociceptivedetectionofelectrocutaneousstimulation AT buitenwegjanr computationalmodelingofadeltafibermediatednociceptivedetectionofelectrocutaneousstimulation AT vangilsstephana computationalmodelingofadeltafibermediatednociceptivedetectionofelectrocutaneousstimulation |