Cargando…
Molecular simulation of water vapor outgassing from silica nanopores
The outgassing problem is solved numerically by molecular dynamics. A slit-shaped nanopore consisting of cavity and channel is built with an implicit tabulated wall potential that describes the water–silicon/silica interaction. A flexible three-point water model is used for the simulation. The effec...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572717/ https://www.ncbi.nlm.nih.gov/pubmed/26413040 http://dx.doi.org/10.1007/s10404-015-1583-3 |
_version_ | 1782390437620744192 |
---|---|
author | Kim, Junghan Frijns, Arjan J. H. Nedea, Silvia V. van Steenhoven, Anton A. |
author_facet | Kim, Junghan Frijns, Arjan J. H. Nedea, Silvia V. van Steenhoven, Anton A. |
author_sort | Kim, Junghan |
collection | PubMed |
description | The outgassing problem is solved numerically by molecular dynamics. A slit-shaped nanopore consisting of cavity and channel is built with an implicit tabulated wall potential that describes the water–silicon/silica interaction. A flexible three-point water model is used for the simulation. The effects of varying the system temperature, outlet pressure, geometry, and materials of the nanopore on the outgassing rate are investigated. The results show that the temperature plays an important role in the outgassing rate, while the effect of the outlet pressure is negligible as long as it is in the high to medium vacuum range. The geometry of the channel also has an influence on the outgassing rate, but not as much as the surface material. Three different types of silica materials are tested: silicon, silica-cristobalite (hydrophilic material), and silica-quartz (super hydrophilic material). The fastest outgassing rate is found for a silicon nanopore. It is also found that a thin water film is formed on the surface of the silica-quartz nanopore. This material shows hardly any outgassing of water. |
format | Online Article Text |
id | pubmed-4572717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-45727172015-09-23 Molecular simulation of water vapor outgassing from silica nanopores Kim, Junghan Frijns, Arjan J. H. Nedea, Silvia V. van Steenhoven, Anton A. Microfluid Nanofluidics Research Paper The outgassing problem is solved numerically by molecular dynamics. A slit-shaped nanopore consisting of cavity and channel is built with an implicit tabulated wall potential that describes the water–silicon/silica interaction. A flexible three-point water model is used for the simulation. The effects of varying the system temperature, outlet pressure, geometry, and materials of the nanopore on the outgassing rate are investigated. The results show that the temperature plays an important role in the outgassing rate, while the effect of the outlet pressure is negligible as long as it is in the high to medium vacuum range. The geometry of the channel also has an influence on the outgassing rate, but not as much as the surface material. Three different types of silica materials are tested: silicon, silica-cristobalite (hydrophilic material), and silica-quartz (super hydrophilic material). The fastest outgassing rate is found for a silicon nanopore. It is also found that a thin water film is formed on the surface of the silica-quartz nanopore. This material shows hardly any outgassing of water. Springer Berlin Heidelberg 2015-05-05 2015 /pmc/articles/PMC4572717/ /pubmed/26413040 http://dx.doi.org/10.1007/s10404-015-1583-3 Text en © The Author(s) 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Paper Kim, Junghan Frijns, Arjan J. H. Nedea, Silvia V. van Steenhoven, Anton A. Molecular simulation of water vapor outgassing from silica nanopores |
title | Molecular simulation of water vapor outgassing from silica nanopores |
title_full | Molecular simulation of water vapor outgassing from silica nanopores |
title_fullStr | Molecular simulation of water vapor outgassing from silica nanopores |
title_full_unstemmed | Molecular simulation of water vapor outgassing from silica nanopores |
title_short | Molecular simulation of water vapor outgassing from silica nanopores |
title_sort | molecular simulation of water vapor outgassing from silica nanopores |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572717/ https://www.ncbi.nlm.nih.gov/pubmed/26413040 http://dx.doi.org/10.1007/s10404-015-1583-3 |
work_keys_str_mv | AT kimjunghan molecularsimulationofwatervaporoutgassingfromsilicananopores AT frijnsarjanjh molecularsimulationofwatervaporoutgassingfromsilicananopores AT nedeasilviav molecularsimulationofwatervaporoutgassingfromsilicananopores AT vansteenhovenantona molecularsimulationofwatervaporoutgassingfromsilicananopores |