Cargando…

How to Isolate a Plant's Hypomethylome in One Shot

Genome assembly remains a challenge for large and/or complex plant genomes due to their abundant repetitive regions resulting in studies focusing on gene space instead of the whole genome. Thus, DNA enrichment strategies facilitate the assembly by increasing the coverage and simultaneously reducing...

Descripción completa

Detalles Bibliográficos
Autores principales: Wischnitzki, Elisabeth, Sehr, Eva Maria, Hansel-Hohl, Karin, Berenyi, Maria, Burg, Kornel, Fluch, Silvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4573423/
https://www.ncbi.nlm.nih.gov/pubmed/26421293
http://dx.doi.org/10.1155/2015/570568
Descripción
Sumario:Genome assembly remains a challenge for large and/or complex plant genomes due to their abundant repetitive regions resulting in studies focusing on gene space instead of the whole genome. Thus, DNA enrichment strategies facilitate the assembly by increasing the coverage and simultaneously reducing the complexity of the whole genome. In this paper we provide an easy, fast, and cost-effective variant of MRE-seq to obtain a plant's hypomethylome by an optimized methyl filtration protocol followed by next generation sequencing. The method is demonstrated on three plant species with knowingly large and/or complex (polyploid) genomes: Oryza sativa, Picea abies, and Crocus sativus. The identified hypomethylomes show clear enrichment for genes and their flanking regions and clear reduction of transposable elements. Additionally, genomic sequences around genes are captured including regulatory elements in introns and up- and downstream flanks. High similarity of the results obtained by a de novo assembly approach with a reference based mapping in rice supports the applicability for studying and understanding the genomes of nonmodel organisms. Hence we show the high potential of MRE-seq in a wide range of scenarios for the direct analysis of methylation differences, for example, between ecotypes, individuals, within or across species harbouring large, and complex genomes.