Cargando…
High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG
BACKGROUND: For membrane protein production, the Escherichia coli T7 RNA polymerase (T7 RNAP)-based protein production strain BL21(DE3) in combination with T7-promoter based expression vectors is widely used. Cells are routinely cultured in Lysogeny broth (LB medium) and expression of the chromosoma...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574001/ https://www.ncbi.nlm.nih.gov/pubmed/26377812 http://dx.doi.org/10.1186/s12934-015-0328-z |
_version_ | 1782390547269287936 |
---|---|
author | Zhang, Zhe Kuipers, Grietje Niemiec, Łukasz Baumgarten, Thomas Slotboom, Dirk Jan de Gier, Jan-Willem Hjelm, Anna |
author_facet | Zhang, Zhe Kuipers, Grietje Niemiec, Łukasz Baumgarten, Thomas Slotboom, Dirk Jan de Gier, Jan-Willem Hjelm, Anna |
author_sort | Zhang, Zhe |
collection | PubMed |
description | BACKGROUND: For membrane protein production, the Escherichia coli T7 RNA polymerase (T7 RNAP)-based protein production strain BL21(DE3) in combination with T7-promoter based expression vectors is widely used. Cells are routinely cultured in Lysogeny broth (LB medium) and expression of the chromosomally localized t7rnap gene is governed by the isopropyl-β-d-1-thiogalactopyranoside (IPTG) inducible lacUV5 promoter. The T7 RNAP drives the expression of the plasmid borne gene encoding the recombinant membrane protein. Production of membrane proteins in the cytoplasmic membrane rather than in inclusion bodies in a misfolded state is usually preferred, but often hampered due to saturation of the capacity of the Sec-translocon, resulting in low yields. RESULTS: Contrary to expectation we observed that omission of IPTG from BL21(DE3) cells cultured in LB medium can lead to significantly higher membrane protein production yields than when IPTG is added. In the complete absence of IPTG cultures stably produce membrane proteins in the cytoplasmic membrane, whereas upon the addition of IPTG membrane proteins aggregate in the cytoplasm and non-producing clones are selected for. Furthermore, in the absence of IPTG, membrane proteins are produced at a lower rate than in the presence of IPTG. These observations indicate that in the absence of IPTG the Sec-translocon capacity is not/hardly saturated, leading to enhanced membrane protein production yields in the cytoplasmic membrane. Importantly, for more than half of the targets tested the yields obtained using un-induced BL21(DE3) cells were higher than the yields obtained in the widely used membrane protein production strains C41(DE3) and C43(DE3). Since most secretory proteins reach the periplasm via the Sec-translocon, we also monitored the production of three secretory recombinant proteins in the periplasm of BL21(DE3) cells in the presence and absence of IPTG. For all three targets tested omitting IPTG led to the highest production levels in the periplasm. CONCLUSIONS: Omission of IPTG from BL21(DE3) cells cultured in LB medium provides a very cost- and time effective alternative for the production of membrane and secretory proteins. Therefore, we recommend that this condition is incorporated in membrane- and secretory protein production screens. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-015-0328-z) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4574001 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-45740012015-09-19 High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG Zhang, Zhe Kuipers, Grietje Niemiec, Łukasz Baumgarten, Thomas Slotboom, Dirk Jan de Gier, Jan-Willem Hjelm, Anna Microb Cell Fact Technical Notes BACKGROUND: For membrane protein production, the Escherichia coli T7 RNA polymerase (T7 RNAP)-based protein production strain BL21(DE3) in combination with T7-promoter based expression vectors is widely used. Cells are routinely cultured in Lysogeny broth (LB medium) and expression of the chromosomally localized t7rnap gene is governed by the isopropyl-β-d-1-thiogalactopyranoside (IPTG) inducible lacUV5 promoter. The T7 RNAP drives the expression of the plasmid borne gene encoding the recombinant membrane protein. Production of membrane proteins in the cytoplasmic membrane rather than in inclusion bodies in a misfolded state is usually preferred, but often hampered due to saturation of the capacity of the Sec-translocon, resulting in low yields. RESULTS: Contrary to expectation we observed that omission of IPTG from BL21(DE3) cells cultured in LB medium can lead to significantly higher membrane protein production yields than when IPTG is added. In the complete absence of IPTG cultures stably produce membrane proteins in the cytoplasmic membrane, whereas upon the addition of IPTG membrane proteins aggregate in the cytoplasm and non-producing clones are selected for. Furthermore, in the absence of IPTG, membrane proteins are produced at a lower rate than in the presence of IPTG. These observations indicate that in the absence of IPTG the Sec-translocon capacity is not/hardly saturated, leading to enhanced membrane protein production yields in the cytoplasmic membrane. Importantly, for more than half of the targets tested the yields obtained using un-induced BL21(DE3) cells were higher than the yields obtained in the widely used membrane protein production strains C41(DE3) and C43(DE3). Since most secretory proteins reach the periplasm via the Sec-translocon, we also monitored the production of three secretory recombinant proteins in the periplasm of BL21(DE3) cells in the presence and absence of IPTG. For all three targets tested omitting IPTG led to the highest production levels in the periplasm. CONCLUSIONS: Omission of IPTG from BL21(DE3) cells cultured in LB medium provides a very cost- and time effective alternative for the production of membrane and secretory proteins. Therefore, we recommend that this condition is incorporated in membrane- and secretory protein production screens. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-015-0328-z) contains supplementary material, which is available to authorized users. BioMed Central 2015-09-16 /pmc/articles/PMC4574001/ /pubmed/26377812 http://dx.doi.org/10.1186/s12934-015-0328-z Text en © Zhang et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Technical Notes Zhang, Zhe Kuipers, Grietje Niemiec, Łukasz Baumgarten, Thomas Slotboom, Dirk Jan de Gier, Jan-Willem Hjelm, Anna High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG |
title | High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG |
title_full | High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG |
title_fullStr | High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG |
title_full_unstemmed | High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG |
title_short | High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG |
title_sort | high-level production of membrane proteins in e. coli bl21(de3) by omitting the inducer iptg |
topic | Technical Notes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574001/ https://www.ncbi.nlm.nih.gov/pubmed/26377812 http://dx.doi.org/10.1186/s12934-015-0328-z |
work_keys_str_mv | AT zhangzhe highlevelproductionofmembraneproteinsinecolibl21de3byomittingtheinduceriptg AT kuipersgrietje highlevelproductionofmembraneproteinsinecolibl21de3byomittingtheinduceriptg AT niemiecłukasz highlevelproductionofmembraneproteinsinecolibl21de3byomittingtheinduceriptg AT baumgartenthomas highlevelproductionofmembraneproteinsinecolibl21de3byomittingtheinduceriptg AT slotboomdirkjan highlevelproductionofmembraneproteinsinecolibl21de3byomittingtheinduceriptg AT degierjanwillem highlevelproductionofmembraneproteinsinecolibl21de3byomittingtheinduceriptg AT hjelmanna highlevelproductionofmembraneproteinsinecolibl21de3byomittingtheinduceriptg |