Cargando…
Control of Precision Grip Force in Lifting and Holding of Low-Mass Objects
Few studies have investigated the control of grip force when manipulating an object with an extremely small mass using a precision grip, although some related information has been provided by studies conducted in an unusual microgravity environment. Grip-load force coordination was examined while he...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574045/ https://www.ncbi.nlm.nih.gov/pubmed/26376484 http://dx.doi.org/10.1371/journal.pone.0138506 |
_version_ | 1782390556552331264 |
---|---|
author | Hiramatsu, Yuichi Kimura, Daisuke Kadota, Koji Ito, Taro Kinoshita, Hiroshi |
author_facet | Hiramatsu, Yuichi Kimura, Daisuke Kadota, Koji Ito, Taro Kinoshita, Hiroshi |
author_sort | Hiramatsu, Yuichi |
collection | PubMed |
description | Few studies have investigated the control of grip force when manipulating an object with an extremely small mass using a precision grip, although some related information has been provided by studies conducted in an unusual microgravity environment. Grip-load force coordination was examined while healthy adults (N = 17) held a moveable instrumented apparatus with its mass changed between 6 g and 200 g in 14 steps, with its grip surface set as either sandpaper or rayon. Additional measurements of grip-force-dependent finger-surface contact area and finger skin indentation, as well as a test of weight discrimination, were also performed. For each surface condition, the static grip force was modulated in parallel with load force while holding the object of a mass above 30 g. For objects with mass smaller than 30 g, on the other hand, the parallel relationship was changed, resulting in a progressive increase in grip-to-load force (GF/LF) ratio. The rayon had a higher GF/LF force ratio across all mass levels. The proportion of safety margin in the static grip force and normalized moment-to-moment variability of the static grip force were also elevated towards the lower end of the object mass for both surfaces. These findings indicate that the strategy of grip force control for holding objects with an extremely small mass differs from that with a mass above 30 g. The data for the contact area, skin indentation, and weight discrimination suggest that a decreased level of cutaneous feedback signals from the finger pads could have played some role in a cost function in efficient grip force control with low-mass objects. The elevated grip force variability associated with signal-dependent and internal noises, and anticipated inertial force on the held object due to acceleration of the arm and hand, could also have contributed to the cost function. |
format | Online Article Text |
id | pubmed-4574045 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45740452015-09-18 Control of Precision Grip Force in Lifting and Holding of Low-Mass Objects Hiramatsu, Yuichi Kimura, Daisuke Kadota, Koji Ito, Taro Kinoshita, Hiroshi PLoS One Research Article Few studies have investigated the control of grip force when manipulating an object with an extremely small mass using a precision grip, although some related information has been provided by studies conducted in an unusual microgravity environment. Grip-load force coordination was examined while healthy adults (N = 17) held a moveable instrumented apparatus with its mass changed between 6 g and 200 g in 14 steps, with its grip surface set as either sandpaper or rayon. Additional measurements of grip-force-dependent finger-surface contact area and finger skin indentation, as well as a test of weight discrimination, were also performed. For each surface condition, the static grip force was modulated in parallel with load force while holding the object of a mass above 30 g. For objects with mass smaller than 30 g, on the other hand, the parallel relationship was changed, resulting in a progressive increase in grip-to-load force (GF/LF) ratio. The rayon had a higher GF/LF force ratio across all mass levels. The proportion of safety margin in the static grip force and normalized moment-to-moment variability of the static grip force were also elevated towards the lower end of the object mass for both surfaces. These findings indicate that the strategy of grip force control for holding objects with an extremely small mass differs from that with a mass above 30 g. The data for the contact area, skin indentation, and weight discrimination suggest that a decreased level of cutaneous feedback signals from the finger pads could have played some role in a cost function in efficient grip force control with low-mass objects. The elevated grip force variability associated with signal-dependent and internal noises, and anticipated inertial force on the held object due to acceleration of the arm and hand, could also have contributed to the cost function. Public Library of Science 2015-09-16 /pmc/articles/PMC4574045/ /pubmed/26376484 http://dx.doi.org/10.1371/journal.pone.0138506 Text en © 2015 Hiramatsu et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hiramatsu, Yuichi Kimura, Daisuke Kadota, Koji Ito, Taro Kinoshita, Hiroshi Control of Precision Grip Force in Lifting and Holding of Low-Mass Objects |
title | Control of Precision Grip Force in Lifting and Holding of Low-Mass Objects |
title_full | Control of Precision Grip Force in Lifting and Holding of Low-Mass Objects |
title_fullStr | Control of Precision Grip Force in Lifting and Holding of Low-Mass Objects |
title_full_unstemmed | Control of Precision Grip Force in Lifting and Holding of Low-Mass Objects |
title_short | Control of Precision Grip Force in Lifting and Holding of Low-Mass Objects |
title_sort | control of precision grip force in lifting and holding of low-mass objects |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574045/ https://www.ncbi.nlm.nih.gov/pubmed/26376484 http://dx.doi.org/10.1371/journal.pone.0138506 |
work_keys_str_mv | AT hiramatsuyuichi controlofprecisiongripforceinliftingandholdingoflowmassobjects AT kimuradaisuke controlofprecisiongripforceinliftingandholdingoflowmassobjects AT kadotakoji controlofprecisiongripforceinliftingandholdingoflowmassobjects AT itotaro controlofprecisiongripforceinliftingandholdingoflowmassobjects AT kinoshitahiroshi controlofprecisiongripforceinliftingandholdingoflowmassobjects |