Cargando…
A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization
It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence—with at most a linear convergence rate—because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP...
Autores principales: | Li, Xiangrong, Zhao, Xupei, Duan, Xiabin, Wang, Xiaoliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575111/ https://www.ncbi.nlm.nih.gov/pubmed/26381742 http://dx.doi.org/10.1371/journal.pone.0137166 |
Ejemplares similares
-
Nonlinear conjugate gradient methods for unconstrained optimization
por: Andrei, Neculai
Publicado: (2020) -
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models
por: Yuan, Gonglin, et al.
Publicado: (2015) -
A conjugate gradient algorithm for large-scale unconstrained optimization problems and nonlinear equations
por: Yuan, Gonglin, et al.
Publicado: (2018) -
The global convergence of spectral RMIL conjugate gradient method for unconstrained optimization with applications to robotic model and image recovery
por: Salihu, Nasiru, et al.
Publicado: (2023) -
A modified nonmonotone BFGS algorithm for unconstrained optimization
por: Li, Xiangrong, et al.
Publicado: (2017)