Cargando…

The Impact of Iterative Reconstruction on Computed Tomography Radiation Dosimetry: Evaluation in a Routine Clinical Setting

PURPOSE: To evaluate the effect of introduction of iterative reconstruction as a mandated software upgrade on radiation dosimetry in routine clinical practice over a range of computed tomography examinations. METHODS: Random samples of scanning data were extracted from a centralised Picture Archivin...

Descripción completa

Detalles Bibliográficos
Autores principales: Moorin, Rachael E., Gibson, David A. J., Forsyth, Rene K., Fox, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575140/
https://www.ncbi.nlm.nih.gov/pubmed/26381145
http://dx.doi.org/10.1371/journal.pone.0138329
Descripción
Sumario:PURPOSE: To evaluate the effect of introduction of iterative reconstruction as a mandated software upgrade on radiation dosimetry in routine clinical practice over a range of computed tomography examinations. METHODS: Random samples of scanning data were extracted from a centralised Picture Archiving Communication System pertaining to 10 commonly performed computed tomography examination types undertaken at two hospitals in Western Australia, before and after the introduction of iterative reconstruction. Changes in the mean dose length product and effective dose were evaluated along with estimations of associated changes to annual cancer incidence. RESULTS: We observed statistically significant reductions in the effective radiation dose for head computed tomography (22–27%) consistent with those reported in the literature. In contrast the reductions observed for non-contrast chest (37–47%); chest pulmonary embolism study (28%), chest/abdominal/pelvic study (16%) and thoracic spine (39%) computed tomography. Statistically significant reductions in radiation dose were not identified in angiographic computed tomography. Dose reductions translated to substantial lowering of the lifetime attributable risk, especially for younger females, and estimated numbers of incident cancers. CONCLUSION: Reduction of CT dose is a priority Iterative reconstruction algorithms have the potential to significantly assist with dose reduction across a range of protocols. However, this reduction in dose is achieved via reductions in image noise. Fully realising the potential dose reduction of iterative reconstruction requires the adjustment of image factors and forgoing the noise reduction potential of the iterative algorithm. Our study has demonstrated a reduction in radiation dose for some scanning protocols, but not to the extent experimental studies had previously shown or in all protocols expected, raising questions about the extent to which iterative reconstruction achieves dose reduction in real world clinical practice.