Cargando…

Phosphoenolpyruvate Carboxykinase, a Key Enzyme That Controls Blood Glucose, Is a Target of Retinoic Acid Receptor-Related Orphan Receptor α

Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes a committed and rate-limiting step in hepatic gluconeogenesis, and its activity is tightly regulated to maintain blood glucose levels within normal limits. PEPCK activity is primarily regulated through hormonal control of gene transcription. Transc...

Descripción completa

Detalles Bibliográficos
Autores principales: Matsuoka, Hiroshi, Shima, Akiho, Kuramoto, Daisuke, Kikumoto, Daisuke, Matsui, Takashi, Michihara, Akihiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575163/
https://www.ncbi.nlm.nih.gov/pubmed/26383638
http://dx.doi.org/10.1371/journal.pone.0137955
Descripción
Sumario:Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes a committed and rate-limiting step in hepatic gluconeogenesis, and its activity is tightly regulated to maintain blood glucose levels within normal limits. PEPCK activity is primarily regulated through hormonal control of gene transcription. Transcription is additionally regulated via a cAMP response unit, which includes a cAMP response element and four binding sites for CCAAT/enhancer-binding protein (C/EBP). Notably, the cAMP response unit also contains a putative response element for retinoic acid receptor-related orphan receptor α (RORα). In this paper, we characterize the effect of the RORα response element on cAMP-induced transcription. Electrophoresis mobility shift assay indicates that RORα binds this response element in a sequence-specific manner. Furthermore, luciferase reporter assays indicate that RORα interacts with C/EBP at the PEPCK promoter to synergistically enhance transcription. We also found that cAMP-induced transcription depends in part on RORα and its response element. In addition, we show that suppression of RORα by siRNA significantly decreased PEPCK transcription. Finally, we found that a RORα antagonist inhibits hepatic gluconeogenesis in an in vitro glucose production assay. Taken together, the data strongly suggest that PEPCK is a direct RORα target. These results define possible new roles for RORα in hepatic gluconeogenesis.