Cargando…

Green-to-Red Photoconversion of GCaMP

Genetically encoded calcium indicators (GECIs) permit imaging intracellular calcium transients. Among GECIs, the GFP-based GCaMPs are the most widely used because of their high sensitivity and rapid response to changes in intracellular calcium concentrations. Here we report that the fluorescence of...

Descripción completa

Detalles Bibliográficos
Autores principales: Ai, Minrong, Mills, Holly, Kanai, Makoto, Lai, Jason, Deng, Jingjing, Schreiter, Eric, Looger, Loren, Neubert, Thomas, Suh, Greg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575167/
https://www.ncbi.nlm.nih.gov/pubmed/26382605
http://dx.doi.org/10.1371/journal.pone.0138127
Descripción
Sumario:Genetically encoded calcium indicators (GECIs) permit imaging intracellular calcium transients. Among GECIs, the GFP-based GCaMPs are the most widely used because of their high sensitivity and rapid response to changes in intracellular calcium concentrations. Here we report that the fluorescence of GCaMPs—including GCaMP3, GCaMP5 and GCaMP6—can be converted from green to red following exposure to blue-green light (450–500 nm). This photoconversion occurs in both insect and mammalian cells and is enhanced in a low oxygen environment. The red fluorescent GCaMPs retained calcium responsiveness, albeit with reduced sensitivity. We identified several amino acid residues in GCaMP important for photoconversion and generated a GCaMP variant with increased photoconversion efficiency in cell culture. This light-induced spectral shift allows the ready labeling of specific, targeted sets of GCaMP-expressing cells for functional imaging in the red channel. Together, these findings indicate the potential for greater utility of existing GCaMP reagents, including transgenic animals.