Cargando…
The Influence of Single Nucleotide Polymorphism Microarray-Based Molecular Karyotype on Preimplantation Embryonic Development Potential
In order to investigate the influence of the molecular karyotype based on single nucleotide polymorphism (SNP) microarray on embryonic development potential in preimplantation genetic diagnosis (PGD), we retrospectively analyzed the clinical data generated by PGD using embryos retrieved from parents...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575173/ https://www.ncbi.nlm.nih.gov/pubmed/26381524 http://dx.doi.org/10.1371/journal.pone.0138234 |
_version_ | 1782390743754604544 |
---|---|
author | Li, Gang He, Nannan Jin, Haixia Liu, Yan Guo, Yihong Su, Yingchun Sun, Yingpu |
author_facet | Li, Gang He, Nannan Jin, Haixia Liu, Yan Guo, Yihong Su, Yingchun Sun, Yingpu |
author_sort | Li, Gang |
collection | PubMed |
description | In order to investigate the influence of the molecular karyotype based on single nucleotide polymorphism (SNP) microarray on embryonic development potential in preimplantation genetic diagnosis (PGD), we retrospectively analyzed the clinical data generated by PGD using embryos retrieved from parents with chromosome rearrangements in our center. In total, 929 embryos from 119 couples had exact diagnosis and development status. The blastocyst formation rate of balanced molecular karyotype embryos was 56.6% (276/488), which was significantly higher than that of genetic imbalanced embryos 24.5% (108/441) (P<0.001). No significant difference was detected in blastocyst formation rates in the groups of maternal age<30, 30–35 and >35 respectively. Blastocyst formation rates of male and female embryos were 44.5% (183/411) and 38.8% (201/518) respectively, with no significant difference between them (P>0.05). The rates of balanced molecular karyotype embryos vary from groups of embryos with different cell numbers at 68 hours after insemination. The blastocyst formation rate of embryos with 6–8 cells (48.1%) was significantly higher than that of embryos with <6 cells (23.9%) and with >8 cells (42.9%) (P<0.05). As for the unbalanced embryos, there was no significant difference of the distribution of abnormal molecular karyotypes in the subgroup of the arrest, morula and blastocyst. Thus, we conclude that embryos with balanced molecular karyotype have significant higher development potential than those with imbalanced molecular karyotype whilst maternal age, embryo gender and types of abnormal molecular karyotype have no significant influence on blastocyst formation. Compared with embryos with <6 and >8 cells, embryos with 6–8 blastomeres have higher rate of balanced molecular karyotype and blastocyst formation. |
format | Online Article Text |
id | pubmed-4575173 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45751732015-09-25 The Influence of Single Nucleotide Polymorphism Microarray-Based Molecular Karyotype on Preimplantation Embryonic Development Potential Li, Gang He, Nannan Jin, Haixia Liu, Yan Guo, Yihong Su, Yingchun Sun, Yingpu PLoS One Research Article In order to investigate the influence of the molecular karyotype based on single nucleotide polymorphism (SNP) microarray on embryonic development potential in preimplantation genetic diagnosis (PGD), we retrospectively analyzed the clinical data generated by PGD using embryos retrieved from parents with chromosome rearrangements in our center. In total, 929 embryos from 119 couples had exact diagnosis and development status. The blastocyst formation rate of balanced molecular karyotype embryos was 56.6% (276/488), which was significantly higher than that of genetic imbalanced embryos 24.5% (108/441) (P<0.001). No significant difference was detected in blastocyst formation rates in the groups of maternal age<30, 30–35 and >35 respectively. Blastocyst formation rates of male and female embryos were 44.5% (183/411) and 38.8% (201/518) respectively, with no significant difference between them (P>0.05). The rates of balanced molecular karyotype embryos vary from groups of embryos with different cell numbers at 68 hours after insemination. The blastocyst formation rate of embryos with 6–8 cells (48.1%) was significantly higher than that of embryos with <6 cells (23.9%) and with >8 cells (42.9%) (P<0.05). As for the unbalanced embryos, there was no significant difference of the distribution of abnormal molecular karyotypes in the subgroup of the arrest, morula and blastocyst. Thus, we conclude that embryos with balanced molecular karyotype have significant higher development potential than those with imbalanced molecular karyotype whilst maternal age, embryo gender and types of abnormal molecular karyotype have no significant influence on blastocyst formation. Compared with embryos with <6 and >8 cells, embryos with 6–8 blastomeres have higher rate of balanced molecular karyotype and blastocyst formation. Public Library of Science 2015-09-18 /pmc/articles/PMC4575173/ /pubmed/26381524 http://dx.doi.org/10.1371/journal.pone.0138234 Text en © 2015 Li et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Li, Gang He, Nannan Jin, Haixia Liu, Yan Guo, Yihong Su, Yingchun Sun, Yingpu The Influence of Single Nucleotide Polymorphism Microarray-Based Molecular Karyotype on Preimplantation Embryonic Development Potential |
title | The Influence of Single Nucleotide Polymorphism Microarray-Based Molecular Karyotype on Preimplantation Embryonic Development Potential |
title_full | The Influence of Single Nucleotide Polymorphism Microarray-Based Molecular Karyotype on Preimplantation Embryonic Development Potential |
title_fullStr | The Influence of Single Nucleotide Polymorphism Microarray-Based Molecular Karyotype on Preimplantation Embryonic Development Potential |
title_full_unstemmed | The Influence of Single Nucleotide Polymorphism Microarray-Based Molecular Karyotype on Preimplantation Embryonic Development Potential |
title_short | The Influence of Single Nucleotide Polymorphism Microarray-Based Molecular Karyotype on Preimplantation Embryonic Development Potential |
title_sort | influence of single nucleotide polymorphism microarray-based molecular karyotype on preimplantation embryonic development potential |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575173/ https://www.ncbi.nlm.nih.gov/pubmed/26381524 http://dx.doi.org/10.1371/journal.pone.0138234 |
work_keys_str_mv | AT ligang theinfluenceofsinglenucleotidepolymorphismmicroarraybasedmolecularkaryotypeonpreimplantationembryonicdevelopmentpotential AT henannan theinfluenceofsinglenucleotidepolymorphismmicroarraybasedmolecularkaryotypeonpreimplantationembryonicdevelopmentpotential AT jinhaixia theinfluenceofsinglenucleotidepolymorphismmicroarraybasedmolecularkaryotypeonpreimplantationembryonicdevelopmentpotential AT liuyan theinfluenceofsinglenucleotidepolymorphismmicroarraybasedmolecularkaryotypeonpreimplantationembryonicdevelopmentpotential AT guoyihong theinfluenceofsinglenucleotidepolymorphismmicroarraybasedmolecularkaryotypeonpreimplantationembryonicdevelopmentpotential AT suyingchun theinfluenceofsinglenucleotidepolymorphismmicroarraybasedmolecularkaryotypeonpreimplantationembryonicdevelopmentpotential AT sunyingpu theinfluenceofsinglenucleotidepolymorphismmicroarraybasedmolecularkaryotypeonpreimplantationembryonicdevelopmentpotential AT ligang influenceofsinglenucleotidepolymorphismmicroarraybasedmolecularkaryotypeonpreimplantationembryonicdevelopmentpotential AT henannan influenceofsinglenucleotidepolymorphismmicroarraybasedmolecularkaryotypeonpreimplantationembryonicdevelopmentpotential AT jinhaixia influenceofsinglenucleotidepolymorphismmicroarraybasedmolecularkaryotypeonpreimplantationembryonicdevelopmentpotential AT liuyan influenceofsinglenucleotidepolymorphismmicroarraybasedmolecularkaryotypeonpreimplantationembryonicdevelopmentpotential AT guoyihong influenceofsinglenucleotidepolymorphismmicroarraybasedmolecularkaryotypeonpreimplantationembryonicdevelopmentpotential AT suyingchun influenceofsinglenucleotidepolymorphismmicroarraybasedmolecularkaryotypeonpreimplantationembryonicdevelopmentpotential AT sunyingpu influenceofsinglenucleotidepolymorphismmicroarraybasedmolecularkaryotypeonpreimplantationembryonicdevelopmentpotential |