Cargando…
Improved L(0) Gradient Minimization with L(1) Fidelity for Image Smoothing
Edge-preserving image smoothing is one of the fundamental tasks in the field of computer graphics and computer vision. Recently, L(0) gradient minimization (LGM) has been proposed for this purpose. In contrast to the total variation (TV) model which employs the L(1) norm of the image gradient, the L...
Autores principales: | Pang, Xueshun, Zhang, Suqi, Gu, Junhua, Li, Lingling, Liu, Boying, Wang, Huaibin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575179/ https://www.ncbi.nlm.nih.gov/pubmed/26383869 http://dx.doi.org/10.1371/journal.pone.0138682 |
Ejemplares similares
-
A Photoacoustic Imaging Algorithm Based on Regularized Smoothed L(0) Norm Minimization
por: Liu, Xueyan, et al.
Publicado: (2021) -
ℓ
(0) Gradient Minimization Based Image Reconstruction for Limited-Angle Computed Tomography
por: Yu, Wei, et al.
Publicado: (2015) -
Compressed Imaging Reconstruction Based on Block Compressed Sensing with Conjugate Gradient Smoothed l(0) Norm
por: Zhang, Yongtian, et al.
Publicado: (2023) -
Gradient Projection with Approximate L(0) Norm Minimization for Sparse Reconstruction in Compressed Sensing
por: Wei, Ziran, et al.
Publicado: (2018) -
A Regularized Weighted Smoothed L(0) Norm Minimization Method for Underdetermined Blind Source Separation
por: Wang, Linyu, et al.
Publicado: (2018)