Cargando…
Ant Colonies Do Not Trade-Off Reproduction against Maintenance
The question on how individuals allocate resources into maintenance and reproduction is one of the central questions in life history theory. Yet, resource allocation into maintenance on the organismic level can only be measured indirectly. This is different in a social insect colony, a “superorganis...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575186/ https://www.ncbi.nlm.nih.gov/pubmed/26383861 http://dx.doi.org/10.1371/journal.pone.0137969 |
Sumario: | The question on how individuals allocate resources into maintenance and reproduction is one of the central questions in life history theory. Yet, resource allocation into maintenance on the organismic level can only be measured indirectly. This is different in a social insect colony, a “superorganism” where workers represent the soma and the queen the germ line of the colony. Here, we investigate whether trade-offs exist between maintenance and reproduction on two levels of biological organization, queens and colonies, by following single-queen colonies of the ant Cardiocondyla obscurior throughout the entire lifespan of the queen. Our results show that maintenance and reproduction are positively correlated on the colony level, and we confirm results of an earlier study that found no trade-off on the individual (queen) level. We attribute this unexpected outcome to the existence of a positive feedback loop where investment into maintenance (workers) increases the rate of resource acquisition under laboratory conditions. Even though food was provided ad libitum, variation in productivity among the colonies suggests that resources can only be utilized and invested into additional maintenance and reproduction by the colony if enough workers are available. The resulting relationship between per-capita and colony productivity in our study fits well with other studies conducted in the field, where decreasing per-capita productivity and the leveling off of colony productivity have been linked to density dependent effects due to competition among colonies. This suggests that the absence of trade-offs in our laboratory study might also be prevalent under natural conditions, leading to a positive association of maintenance, (= growth) and reproduction. In this respect, insect colonies resemble indeterminate growing organisms. |
---|