Cargando…

Epithelial to Mesenchymal Transition in a Clinical Perspective

Tumor growth and metastatic dissemination rely on cellular plasticity. Among the different phenotypes acquired by cancer cells, epithelial to mesenchymal transition (EMT) has been extensively illustrated. Indeed, this transition allows an epithelial polarized cell to acquire a more mesenchymal pheno...

Descripción completa

Detalles Bibliográficos
Autores principales: Pasquier, Jennifer, Abu-Kaoud, Nadine, Al Thani, Haya, Rafii, Arash
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575734/
https://www.ncbi.nlm.nih.gov/pubmed/26425122
http://dx.doi.org/10.1155/2015/792182
Descripción
Sumario:Tumor growth and metastatic dissemination rely on cellular plasticity. Among the different phenotypes acquired by cancer cells, epithelial to mesenchymal transition (EMT) has been extensively illustrated. Indeed, this transition allows an epithelial polarized cell to acquire a more mesenchymal phenotype with increased mobility and invasiveness. The role of EMT is quite clear during developmental stage. In the neoplastic context in many tumors EMT has been associated with a more aggressive tumor phenotype including local invasion and distant metastasis. EMT allows the cell to invade surrounding tissues and survive in the general circulation and through a stem cell phenotype grown in the host organ. The molecular pathways underlying EMT have also been clearly defined and their description is beyond the scope of this review. Here we will summarize and analyze the attempts made to block EMT in the therapeutic context. Indeed, till today, most of the studies are made in animal models. Few clinical trials are ongoing with no obvious benefits of EMT inhibitors yet. We point out the limitations of EMT targeting such tumor heterogeneity or the dynamics of EMT during disease progression.