Cargando…
antaRNA: ant colony-based RNA sequence design
Motivation: RNA sequence design is studied at least as long as the classical folding problem. Although for the latter the functional fold of an RNA molecule is to be found, inverse folding tries to identify RNA sequences that fold into a function-specific target structure. In combination with RNA-ba...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4576691/ https://www.ncbi.nlm.nih.gov/pubmed/26023105 http://dx.doi.org/10.1093/bioinformatics/btv319 |
Sumario: | Motivation: RNA sequence design is studied at least as long as the classical folding problem. Although for the latter the functional fold of an RNA molecule is to be found, inverse folding tries to identify RNA sequences that fold into a function-specific target structure. In combination with RNA-based biotechnology and synthetic biology, reliable RNA sequence design becomes a crucial step to generate novel biochemical components. Results: In this article, the computational tool antaRNA is presented. It is capable of compiling RNA sequences for a given structure that comply in addition with an adjustable full range objective GC-content distribution, specific sequence constraints and additional fuzzy structure constraints. antaRNA applies ant colony optimization meta-heuristics and its superior performance is shown on a biological datasets. Availability and implementation: http://www.bioinf.uni-freiburg.de/Software/antaRNA Contact: backofen@informatik.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. |
---|